Bootstrap

常用数据结构_排序_查找练习

1冒泡排序

#include<stdio.h>
//打印
void print(int r[],int length){
	if(r == NULL)return;
	int i;
	for(i=0;i<length;i++){
		printf("%3d",r[i]);
	}
	printf("\n");
} 
//交换 数值
void swap(int r[],int i,int j){
	int tmp = r[i];
	r[i] = r[j];
	r[j] = tmp;
}
//常规冒泡排序 
void bubbleSort(int r[],int length){
	if(r == NULL || length<=0)return;
	int i,j;
	for(i=0;i<length;i++){
		for(j=length-1;j>i;j--){
			if(r[j]<r[j-1]){
				int tmp = r[j];
				r[j] = r[j-1];
				r[j-1] = tmp;
			}
		}
	}	
} 
//改进冒泡排序添加flag 
void bubbleSort1(int r[],int length){
	if(r == NULL || length<=0)return ;
	int i,j,tmp;
	bool flag = true;
	for(i=0;i<length && flag;i++){
		flag = false;
		for(j=length-1;j>i;j--){
			if(r[j]<r[j-1]){
				tmp = r[j];
				r[j] = r[j-1];
				r[j-1] = tmp;
				
				flag = true;
			}
		}
	}
} 
//改进冒泡排序-双向查找
void bubbleSort2(int r[],int length){
	if(r == NULL || length<=0)return;
	int low,high;
	low = 0;
	high = length-1;
	while(low<high){
		for(int i=low;i<high;i++){ //正向找出每次最大值 
			if(r[i]>r[i+1])swap(r,i,i+1);
		}
		high--;
		for(int i=high;i>low;i--){
			if(r[i]<r[i-1])swap(r,i,i-1);
		} 
		low++;
	}	
	
} 
 
int main(){
	int r[] = {3,5,9,8,1,4,6,7,2};
	print(r,9);
	//bubbleSort(r,9); //常规排序 
	//bubbleSort1(r,9); //添加flag冒泡排序 
	bubbleSort2(r,9); //双向查找 
	print(r,9);
	
	
	return 0;
}


2简单选择排序

#include<stdio.h>

//打印
void print(int r[],int length){
	if(r==NULL || length<=0)return;
	int i = 0;
	for(i=0;i<length;i++){
		printf("%3d",r[i]);
	}
	printf("\n");
}

//交换
void swap(int r[],int i,int j){
	if(r==NULL || i<0 || j<0)return;
	int tmp = r[i];
	r[i] = r[j];
	r[j] = tmp; 
} 

//简单选择排序
void selectSort(int r[],int length){
	if(r==NULL || length<=0)return;
	int i,j,min;
	for(i=0;i<length-1;i++){
		min = i;
		for(j=i+1;j<length;j++){
			if(r[j]<r[min]){
				min = j;
			}
		}
		if(min != i){
			swap(r,i,min);
		}
	}
}

int main(){
	int r[] = {3,5,9,8,1,4,6,7,2};
	print(r,9);
	selectSort(r,9);
	print(r,9); 
	
	return 0;
} 



 


3直接插入排序

#include<stdio.h>


//打印
void print(int r[],int length){
	if(r==NULL || length<=0) return;
	int i;
	for(i=0;i<length;i++){
		printf("%3d",r[i]);
	}
	printf("\n");
} 

//直接插入排序
void insertSort(int r[],int length){
	if(r==NULL || length<=0) return ;
	int i;
	for(i=1;i<length;i++){
		if(r[i]<r[i-1]){
			int x = r[i];
			int j = i-1;
			while(x<r[j] && j>=0){
				r[j+1] = r[j];
				j--;
			}
			r[j+1] = x;
		}
	}	
} 

int main(){
	int r[] = {3,5,9,8,1,4,6,7,2};
	print(r,9);
	insertSort(r,9);
	print(r,9); 
	
	return 0;
} 

4希尔排序

#include<stdio.h>

//打印
void print(int r[],int length){
	if(r==NULL || length<=0)return;
	int i;
	for(i=0;i<length;i++){
		printf("%3d",r[i]);
	}
	printf("\n");
} 
//直接插入排序
void insertSort(int r[],int length,int dk){
	if(r==NULL || length<=0)return;
	int i;
	for(i=dk;i<length;i++){
		if(r[i]<r[i-dk]){
			int x = r[i];
			int j = i-dk;
			while(x<r[j] && j>=0){
				r[j+dk] = r[j];
				j = j-dk;
			}
			r[j+dk] = x;
		} 
	}
	 
} 
//希尔排序
void shellSort(int r[],int length){
	if(r==NULL || length<=0)return;
	int dk = (length-1)/2;
	while(dk>=1){
		insertSort(r,length,dk);
		dk  = dk/2;
	}
} 

int main(){
	int r[] = {3,5,9,8,1,4,6,7,2};
	print(r,9);
	shellSort(r,9);
	print(r,9); 
	
	return 0;
} 


5堆排序

#include<stdio.h>

//打印
void print(int r[],int length){
	if(r==NULL || length<=0)return ;
	int i = 0;
	for(i=0;i<length;i++){
		printf("%3d",r[i]);
	}
	printf("\n");
} 
//调整堆(构建大顶堆) 
void heapAdjust(int r[],int s,int length){
	int tmp = r[s]; //当前操作的节点 
	int child = 2*s+1; //s的左孩子 
	while(child	<length	){
		if(child+1<length && r[child]<r[child+1]){ //找到左右子节点中的最大值 
			child++;
		}
		if(r[s]<r[child]){
			r[s] = r[child];
			s = child;
			child = 2*s+1; 
		}else{ //如果父节点本身就比子节点大则,跳出循环 
			break;
		}
		r[s] = tmp; 
	} 
} 
 
//创建堆
void buidHeap(int r[],int length){
	int i = 0;
	for(i=(length-1)/2;i>=0;i--){
		heapAdjust(r,i,length);
	}
} 
//堆排序
void heapSort(int r[],int length){
	int i,tmp;
	buidHeap(r,length); //构建大顶堆 
	for(i=length-1;i>=0;i--){
		int tmp = r[i];
		r[i] = r[0]; 
		r[0] = tmp;
		heapAdjust(r,0,i); //每次交换堆顶元素和堆中最后一个元素之后,都要对堆进行调整  
	}
	
} 

int main(){
	int r[] = {3,5,9,8,1,4,6,7,2};
	print(r,9);
	heapSort(r,9);
	print(r,9); 
	
	return 0;
} 


6归并排序

#include<stdio.h>
typedef int ElemType[10];
//打印 
void print(ElemType r,int n){
    int i;
    for(i=0;i<n;i++){
        printf("%3d",r[i]);
    }
    printf("\n");
}

//合并
void Merge(ElemType	r,ElemType rf, int s,int m,int t){
	int i,j,k;
	for(j=m+1,i=s,k=s;i<=m && j<=t;k++){
		if(r[i]<r[j]){
			rf[k] = r[i++];	
		}else{
			rf[k] = r[j++];
		}
	}
	while(i<=m)rf[k++] = r[i++];
	while(j<=t)rf[k++] = r[j++];
} 


//归并排序
void MSort(ElemType	r,ElemType rf,int s,int t){
	ElemType rf2;
	if(s==t){
		rf[s] = r[s];
	}else{
		int m = (s+t)/2;
		MSort(r,rf2,s,m);
		MSort(r,rf2,m+1,t);
		Merge(rf2,rf,s,m,t); 
	}
} 


int main(){
	ElemType r = {3,1,5,7,2,4,9,6,10,8}; 
    ElemType rf; 
    printf("排序前:\n");
    print(r,10); 
    printf("归并排序后:\n");
    MSort(r,rf,0,9);
    print(rf,10);

    return 0;
} 


7快速排序

#include<stdio.h>

typedef int ElemType[10];

//打印
void print(ElemType r,int length){
	if(r==NULL || length<=0)return;
	int i = 0;
	for(i=0;i<length;i++){
		printf("%3d",r[i]);
	}
	printf("\n");
} 
//交换 
void swap(ElemType r,int low ,int high){
	int tmp = r[low];
	r[low] = r[high];
	r[high] = tmp;
} 
//获取枢轴 
int partition(ElemType r,int low,int high){
	int privotKey = r[low];
	while(low<high){
		while(low<high && r[high]>=privotKey)high--;
		swap(r,low,high);
		while(low<high && r[low]<=privotKey)low++;
		swap(r,low,high); 
	}
	return low;
} 
//快速排序
void QSort(ElemType r,int low,int high){
	if(low<high){
		int privot = partition(r,low,high);
		QSort(r,low,privot-1);
		QSort(r,privot+1,high);
	}
} 

int main(){
	ElemType r = {3,1,5,7,2,4,9,6,10,8}; 

    printf("排序前:\n");
    print(r,10); 
    printf("归并排序后:\n");
    QSort(r,0,9);
    print(r,10);

    return 0;
} 


二分查找

#include<stdio.h>

typedef int ElemType[10];

//打印
void print(ElemType r,int length){
	if(r==NULL || length<=0)return;
	int i = 0;
	for(i=0;i<length;i++){
		printf("%3d",r[i]);
	}
	printf("\n");
} 
//交换 
void swap(ElemType r,int low ,int high){
	int tmp = r[low];
	r[low] = r[high];
	r[high] = tmp;
} 
//获取枢轴 
int partition(ElemType r,int low,int high){
	int privotKey = r[low];
	while(low<high){
		while(low<high && r[high]>=privotKey)high--;
		swap(r,low,high);
		while(low<high && r[low]<=privotKey)low++;
		swap(r,low,high); 
	}
	return low;
} 
//快速排序
void QSort(ElemType r,int low,int high){
	if(low<high){
		int privot = partition(r,low,high);
		QSort(r,low,privot-1);
		QSort(r,privot+1,high);
	}
} 
//二分查找
void binSearch(ElemType r,int length,int key){
	if(r==NULL || length<=0)return;
	int low = 0;
	int high = length-1;
	while(low<high){
		int mid = (low+high)/2;
		if(r[mid] == key){
			printf("已查找到!\n");
			return ;
		}else if(r[mid]<key){
			low = mid+1;
		}else{
			high = mid-1;
		}
	}
	printf("未查找到!\n");
} 
int main(){
	ElemType r = {3,1,5,7,2,4,9,6,10,8}; 
	int key = 6;
    printf("排序前:\n");
    print(r,10); 
    printf("归并排序后:\n");
    QSort(r,0,9);
    print(r,10); 
    printf("查找元素%d的结果:",key);
    binSearch(r,10,key); 
  

    return 0;
} 

递归创建遍历二叉树

#include<stdio.h>
#include<stdlib.h>

typedef struct Node{
	int data;
	struct Node *lchild;
	struct Node *rchild;
}Node,*P_Node; 

//创建树
void createTree(P_Node &T){
	char data;
	scanf("%c",&data);
	if(data == '#'){
		T = NULL;
		return;
	}else{
		T = (P_Node)malloc(sizeof(Node));
		if(T == NULL){
			printf("创建树失败!\n");
			return; 
		} 
		T->data = data;
		createTree(T->lchild);
		createTree(T->rchild); 
		
	}
} 
//前序遍历
void preOrderTraversal(P_Node &T){
	if(T == NULL){
		return ;
	}
	printf("%3c",T->data);
	preOrderTraversal(T->lchild);
	preOrderTraversal(T->rchild);
} 
//中序遍历
void midOrderTraversal(P_Node T){
	if(T == NULL){
		return ;
	}
	midOrderTraversal(T->lchild);
	printf("%3c",T->data);
	midOrderTraversal(T->rchild);
} 
//后序遍历
void afterOrderTraversal(P_Node T){
	if(T == NULL){
		return ;
	}
	afterOrderTraversal(T->lchild);
	afterOrderTraversal(T->rchild);
	printf("%3c",T->data);	
} 

int main(){
	P_Node T;
	createTree(T);
	printf("\前序遍历:");
	preOrderTraversal(T);
	printf("\n中序遍历:");
	midOrderTraversal(T);
	printf("\n后序遍历:");
	afterOrderTraversal(T); 
	printf("\n"); 
	return 0;
}

非递归创建遍历二叉树

#include<stdio.h>
#include<stdlib.h>
#include <stack>  //需要引入栈文件 

using namespace std;//同时要设置命名空间 

typedef struct Node{
	char data;
	struct Node *lchild;
	struct Node *rchild;
}Node,*P_Node;


//创建二叉树树
void createTree(P_Node &T){
	char data;
	scanf("%c",&data);
	if(data == '#'){
		T = NULL;
		return;
	}else{
		T = (P_Node)malloc(sizeof(Node));
		if(T == NULL){
			printf("创建树失败!\n");
			exit(-1);
		}
		T->data = data;
		createTree(T->lchild);
		createTree(T->rchild);
	}
} 

//非递归前序遍历二叉树
void preOrderTraversal(P_Node T){
	stack<P_Node> Stack;
	while(T || !Stack.empty()){
		while(T){
			printf("%3c",T->data);
			Stack.push(T);
			T = T->lchild;
		}
		T = Stack.top();
		Stack.pop();
		T = T->rchild;
	}
} 
//非递归中序遍历二叉树
void midOrderTraversal(P_Node T){
	stack<P_Node> Stack;
	while(T || !Stack.empty()){
		while(T){
			Stack.push(T);
			T = T->lchild;
		}
		T = Stack.top();
		printf("%3c",T->data);
		Stack.pop();
		T = T->rchild; 
	} 
} 
//非递归后序遍历二叉树
void afterOrderTraversal(P_Node T){
	stack<P_Node> Stack;
    P_Node pCur; //定义指针,指向当前节点  
    P_Node pPre = NULL;//定义指针,指向上一各访问的节点  

    Stack.push(T);
    while(!Stack.empty()){
        pCur = Stack.top();
        //如果当前节点没有左右孩子,或者有左孩子或有孩子,但已经被访问输出,  
        //则直接输出该节点,将其出栈,将其设为上一个访问的节点  
        if((pCur->lchild==NULL && pCur->rchild == NULL) ||
        (pPre != NULL && (pCur->lchild==pPre || pCur->rchild == pPre))){
            printf("%3c",pCur->data);
            Stack.pop();
            pPre = pCur;
        }else{
            //如果不满足上面两种情况,则将其右孩子左孩子依次入栈  
            if(pCur->rchild != NULL)  
                Stack.push(pCur->rchild);  
            if(pCur->lchild != NULL)  
               Stack.push(pCur->lchild);
        }
    }
} 

int main(){
	P_Node T;
	createTree(T);
	printf("\n非递归前序遍历:");
	preOrderTraversal(T);
	printf("\n非递归中序遍历:");
	midOrderTraversal(T);
	printf("\n非递归后续遍历:");
	afterOrderTraversal(T); 
	printf("\n");
	printf("Hello world !\n");
	return 0; 
}


;