背景
在RocketMq集群中,queue分布在各个不同的broker服务器中时,当尝试向其中一个queue发送消息时,如果出现耗时过长或者发送失败的情况,RocketMQ则会尝试重试发送。不妨细想一下,同样的消息第一次发送失败或耗时过长,可能是网络波动或者相关broker停止导致,如果短时间再次重试极有可能还是同样的情况。
RocketMQ为我们提供了延迟故障自动切换queue的功能,并且会根据故障次数和失败等级来预判故障时间并自动恢复,该功能是选配,默认关闭,可以通过如下配置开启。
DefaultMQProducer producer = new DefaultMQProducer("producerGroup");
producer.setSendLatencyFaultEnable(true);
注:该功能只有在没有指定queue时生效
源码解读
我们定位到queue决策和重试相关的源码中org.apache.rocketmq.client.impl.producer.DefaultMQProducerImpl#sendDefaultImpl
private SendResult sendDefaultImpl(
Message msg,
final CommunicationMode communicationMode,
final SendCallback sendCallback,
final long timeout
) throws MQClientException, RemotingException, MQBrokerException, InterruptedException {
this.makeSureStateOK();
// 参数校验
Validators.checkMessage(msg, this.defaultMQProducer);
final long invokeID = random.nextLong();
long beginTimestampFirst = System.currentTimeMillis();
long beginTimestampPrev = beginTimestampFirst;
long endTimestamp = beginTimestampFirst;
// 获得topic发布的信息
TopicPublishInfo topicPublishInfo = this.tryToFindTopicPublishInfo(msg.getTopic());
// 这里.ok()是判断是否有可用的queue,只有当queue不为空时才能将消息投递出去
if (topicPublishInfo != null && topicPublishInfo.ok()) {
boolean callTimeout = false;
MessageQueue mq = null;
Exception exception = null;
SendResult sendResult = null;
// 同步执行需要设置一个最大重试次数
int timesTotal = communicationMode == CommunicationMode.SYNC ? 1 + this.defaultMQProducer.getRetryTimesWhenSendFailed() : 1;
int times = 0;
String[] brokersSent = new String[timesTotal];
for (; times < timesTotal; times++) {
String lastBrokerName = null == mq ? null : mq.getBrokerName();
// 选择投递的queue,会自动规避最近故障的queue
MessageQueue mqSelected = this.selectOneMessageQueue(topicPublishInfo, lastBrokerName);
if (mqSelected != null) {
mq = mqSelected;
brokersSent[times] = mq.getBrokerName();
try {
beginTimestampPrev = System.currentTimeMillis();
if (times > 0) {
// 为了防止namespace状态发生变更,重试期间利用namespace重新解析topic名称
msg.setTopic(this.defaultMQProducer.withNamespace(msg.getTopic()));
}
long costTime = beginTimestampPrev - beginTimestampFirst;
if (timeout < costTime) {
// 如果超时则break停止投递
callTimeout = true;
break;
}
// 开始投递消息
sendResult = this.sendKernelImpl(msg, mq, communicationMode, sendCallback, topicPublishInfo, timeout - costTime);
endTimestamp = System.currentTimeMillis();
// 更新发送超时记录,用于规避再次故障
this.updateFaultItem(mq.getBrokerName(), endTimestamp - beginTimestampPrev, false);
switch (communicationMode) {
case ASYNC:
return null;
case ONEWAY:
return null;
case SYNC:
if (sendResult.getSendStatus() != SendStatus.SEND_OK) {
if (this.defaultMQProducer.isRetryAnotherBrokerWhenNotStoreOK()) {
// 失败则尝试投递其他broker
continue;
}
}
return sendResult;
default:
break;
}
} catch (RemotingException e) {
endTimestamp = System.currentTimeMillis();
this.updateFaultItem(mq.getBrokerName(), endTimestamp - beginTimestampPrev, true);
log.warn(String.format("sendKernelImpl exception, resend at once, InvokeID: %s, RT: %sms, Broker: %s", invokeID, endTimestamp - beginTimestampPrev, mq), e);
log.warn(msg.toString());
exception = e;
continue;
} catch (MQClientException e) {
endTimestamp = System.currentTimeMillis();
this.updateFaultItem(mq.getBrokerName(), endTimestamp - beginTimestampPrev, true);
log.warn(String.format("sendKernelImpl exception, resend at once, InvokeID: %s, RT: %sms, Broker: %s", invokeID, endTimestamp - beginTimestampPrev, mq), e);
log.warn(msg.toString());
exception = e;
continue;
} catch (MQBrokerException e) {
endTimestamp = System.currentTimeMillis();
this.updateFaultItem(mq.getBrokerName(), endTimestamp - beginTimestampPrev, true);
log.warn(String.format("sendKernelImpl exception, resend at once, InvokeID: %s, RT: %sms, Broker: %s", invokeID, endTimestamp - beginTimestampPrev, mq), e);
log.warn(msg.toString());
exception = e;
if (this.defaultMQProducer.getRetryResponseCodes().contains(e.getResponseCode())) {
continue;
} else {
if (sendResult != null) {
return sendResult;
}
throw e;
}
} catch (InterruptedException e) {
endTimestamp = System.currentTimeMillis();
this.updateFaultItem(mq.getBrokerName(), endTimestamp - beginTimestampPrev, false);
log.warn(String.format("sendKernelImpl exception, throw exception, InvokeID: %s, RT: %sms, Broker: %s", invokeID, endTimestamp - beginTimestampPrev, mq), e);
log.warn(msg.toString());
log.warn("sendKernelImpl exception", e);
log.warn(msg.toString());
throw e;
}
} else {
break;
}
}
// 是否有响应数据,有则直接响应结果
if (sendResult != null) {
return sendResult;
}
// 下面就是异常类的包装和抛出操作
String info = String.format("Send [%d] times, still failed, cost [%d]ms, Topic: %s, BrokersSent: %s",
times,
System.currentTimeMillis() - beginTimestampFirst,
msg.getTopic(),
Arrays.toString(brokersSent));
info += FAQUrl.suggestTodo(FAQUrl.SEND_MSG_FAILED);
MQClientException mqClientException = new MQClientException(info, exception);
if (callTimeout) {
throw new RemotingTooMuchRequestException("sendDefaultImpl call timeout");
}
if (exception instanceof MQBrokerException) {
mqClientException.setResponseCode(((MQBrokerException) exception).getResponseCode());
} else if (exception instanceof RemotingConnectException) {
mqClientException.setResponseCode(ClientErrorCode.CONNECT_BROKER_EXCEPTION);
} else if (exception instanceof RemotingTimeoutException) {
mqClientException.setResponseCode(ClientErrorCode.ACCESS_BROKER_TIMEOUT);
} else if (exception instanceof MQClientException) {
mqClientException.setResponseCode(ClientErrorCode.BROKER_NOT_EXIST_EXCEPTION);
}
// 将包装好的异常结果抛出
throw mqClientException;
}
// 校验NameServer服务器是否正常
validateNameServerSetting();
// 抛出topic异常信息
throw new MQClientException("No route info of this topic: " + msg.getTopic() + FAQUrl.suggestTodo(FAQUrl.NO_TOPIC_ROUTE_INFO),
null).setResponseCode(ClientErrorCode.NOT_FOUND_TOPIC_EXCEPTION);
}
注意this.updateFaultItem(mq.getBrokerName(), endTimestamp - beginTimestampPrev, false);
这行代码,该代码在消息推送至broker完成之后会立马调用,捕获异常一样会调用该方法,我们前面说了出现耗时过长或者发送失败该broker都会被暂时标记为不可用,我们看看它底层是如何实现的。
顺着代码定位到org.apache.rocketmq.client.latency.MQFaultStrategy#updateFaultItem
public void updateFaultItem(final String brokerName, final long currentLatency, boolean isolation) {
// 配置如果开启则生效
if (this.sendLatencyFaultEnable) {
// 如果是个隔离异常则标记执行持续时长为30秒,并根据执行时长计算broker不可用时长
long duration = computeNotAvailableDuration(isolation ? 30000 : currentLatency);
// 记录broker不可用的时长信息
this.latencyFaultTolerance.updateFaultItem(brokerName, currentLatency, duration);
}
}
private long computeNotAvailableDuration(final long currentLatency) {
for (int i = latencyMax.length - 1; i >= 0; i--) {
if (currentLatency >= latencyMax[i])
return this.notAvailableDuration[i];
}
return 0;
}
以上方法有三个入参
- brokerName broker的名称
- currentLatency 截至当前延迟
- isolation 是否隔离,该处会直接将隔离状态的延迟时长标记为30秒,也就是说为true时就认为执行时长为30秒
在computeNotAvailableDuration
方法中使用了两个数组,我们看看这两个数组
private long[] latencyMax = {50L, 100L, 550L, 1000L, 2000L, 3000L, 15000L};
private long[] notAvailableDuration = {0L, 0L, 30000L, 60000L, 120000L, 180000L, 600000L};
以上latencyMax表示执行时长,notAvailableDuration表示broker不可用时长,他们索引位一一对应,该方法是反向遍历索引位置,假设我当前消息推送时长为600ms,对应latencyMax下标是2,那么在notAvailableDuration下标也是2,这个broker的不可用时长则是30000ms。
下面我们看看不可用的broker是如何维护的,顺着逻辑定位到org.apache.rocketmq.client.latency.LatencyFaultToleranceImpl#updateFaultItem
@Override
public void updateFaultItem(final String name, final long currentLatency, final long notAvailableDuration) {
// 查看broker是否被标记过
FaultItem old = this.faultItemTable.get(name);
if (null == old) {
// 没有则进行一次标记
final FaultItem faultItem = new FaultItem(name);
// 记录本次的耗时
faultItem.setCurrentLatency(currentLatency);
// 当前时间+不可用时间=截至时间
faultItem.setStartTimestamp(System.currentTimeMillis() + notAvailableDuration);
// 再次尝试放入map中,为了防止并发情况下key已存在,则使用putIfAbsent
old = this.faultItemTable.putIfAbsent(name, faultItem);
if (old != null) {
// 放入时已存在则更新存在的对象
old.setCurrentLatency(currentLatency);
old.setStartTimestamp(System.currentTimeMillis() + notAvailableDuration);
}
} else {
// broker被标记过则直接更新
old.setCurrentLatency(currentLatency);
old.setStartTimestamp(System.currentTimeMillis() + notAvailableDuration);
}
}
被标记的broker使用ConcurrentHashMap维护它的延迟对象
,其中包含耗时时长和截至不可用的时间
到这我们就知道异常不可用的原理了,接下来我们看看queue自动决策时相关的代码,我们再次定位到org.apache.rocketmq.client.impl.producer.DefaultMQProducerImpl#sendDefaultImpl
注意MessageQueue mqSelected = this.selectOneMessageQueue(topicPublishInfo, lastBrokerName);
这行代码,因为存在重试逻辑,所以这里有lastBrokerName,表示上次调用时使用的broker,topicPublishInfo表示要投递的topic相关信息。
顺着逻辑进入到核心queue决策的方法org.apache.rocketmq.client.latency.MQFaultStrategy#selectOneMessageQueue
public MessageQueue selectOneMessageQueue(final TopicPublishInfo tpInfo, final String lastBrokerName) {
// 是否开启延迟故障功能
if (this.sendLatencyFaultEnable) {
try {
// 使用threadlocal维护索引位置,做到线程隔离
int index = tpInfo.getSendWhichQueue().incrementAndGet();
// 遍历所有可用queue
for (int i = 0; i < tpInfo.getMessageQueueList().size(); i++) {
// 索引位置对queue数量进行取模,保证分布尽量均匀
int pos = Math.abs(index++) % tpInfo.getMessageQueueList().size();
if (pos < 0)
pos = 0;
MessageQueue mq = tpInfo.getMessageQueueList().get(pos);
// 检查broker是否可用
if (latencyFaultTolerance.isAvailable(mq.getBrokerName()))
return mq;
}
// 没有可用的broker走下面逻辑
// 从疑似故障的broker中强行取一个broker出来
final String notBestBroker = latencyFaultTolerance.pickOneAtLeast();
// 从broker中取一个queue
int writeQueueNums = tpInfo.getQueueIdByBroker(notBestBroker);
if (writeQueueNums > 0) {
final MessageQueue mq = tpInfo.selectOneMessageQueue();
if (notBestBroker != null) {
mq.setBrokerName(notBestBroker);
mq.setQueueId(tpInfo.getSendWhichQueue().incrementAndGet() % writeQueueNums);
}
return mq;
} else {
latencyFaultTolerance.remove(notBestBroker);
}
} catch (Exception e) {
log.error("Error occurred when selecting message queue", e);
}
return tpInfo.selectOneMessageQueue();
}
// 重最后一个broker中取出一个queue
return tpInfo.selectOneMessageQueue(lastBrokerName);
}
这里latencyFaultTolerance.isAvailable(mq.getBrokerName())
就是利用了前面ConcurrentHashMap存储的延迟对象,通过与当前时间来判定是否可用
public boolean isAvailable() {
// startTimestamp是 上次调度故障的时间+故障恢复时间
return (System.currentTimeMillis() - startTimestamp) >= 0;
}
假如说这里全部broker都曾被标记为故障,且都还没有到达恢复时间怎么办呢?
以上代码final String notBestBroker = latencyFaultTolerance.pickOneAtLeast();
会强制的从故障的broker中取一个出来,我们定位到org.apache.rocketmq.client.latency.LatencyFaultToleranceImpl#pickOneAtLeast
public String pickOneAtLeast() {
final Enumeration<FaultItem> elements = this.faultItemTable.elements();
List<FaultItem> tmpList = new LinkedList<FaultItem>();
while (elements.hasMoreElements()) {
final FaultItem faultItem = elements.nextElement();
tmpList.add(faultItem);
}
if (!tmpList.isEmpty()) {
// 这里属于无效操作,忽略就好,官方已在最新版本修复
Collections.shuffle(tmpList);
// 进行排序
Collections.sort(tmpList);
// 这段逻辑表示只从延迟最低的一半broker中选择一个
final int half = tmpList.size() / 2;
if (half <= 0) {
return tmpList.get(0).getName();
} else {
final int i = this.whichItemWorst.incrementAndGet() % half;
return tmpList.get(i).getName();
}
}
return null;
}
注意以上逻辑,并不是随便拿一个出来,首先会根据最近一次调度的延迟来进行排序,然后折半,只从最快的那一半broker中取模一个broker出来。
上面
Collections.shuffle(tmpList);
忽略就好,官方已说明这里将会被修复https://github.com/apache/rocketmq/pull/3945
可以看到RocketMQ在消息发送端,仅仅是故障熔断、故障切换就做了很多考量,当然,本章所讲代码只适用于在没有手动指定queue且开启了发送延迟故障功能的情况。