给定两个单词 word1
和 word2
,返回使得 word1
和 word2
相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例 1:
输入: word1 = "sea", word2 = "eat" 输出: 2 解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"
示例 2:
输入:word1 = "leetcode", word2 = "etco" 输出:4
提示:
1 <= word1.length, word2.length <= 500
word1
和word2
只包含小写英文字母
思路:
用递归的思路从右往左想,
如果两个 char 相同,那么不用删除,直接处理左侧剩余字符即可,
如果两个 char 不同,那么我们肯定至少要删除一个字符(删除次数 + 1),具体删哪一个都有可能,所以两种可能都尝试一次。
当一个字符串全部处理完毕之后,另一个字符串剩下的部分需要全部被删除,假设这个字符串当前下标是1,就代表还有(1 + 1)个字符没有被删除,对应递归结束的处理。
时间复杂度:O(MN)
空间复杂度:O(MN)
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
@cache
def dfs(i, j):
if i < 0 or j < 0: # if one word is empty, we need to delete all left chars in the other word
return max(i, j) + 1
if word1[i] == word2[j]: # deletion is unnecessary
return dfs(i - 1, j - 1)
else: # try delete each one
return 1 + min(dfs(i, j - 1) , dfs(i - 1, j))
return dfs(m - 1, n - 1)
第二种思路:
将 Dfs + memo 的代码翻译成 DP。
时间复杂度:O(MN)
空间复杂度:O(MN)
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
# @cache
# def dfs(i, j):
# if i < 0 or j < 0: # if one word is empty, we need to delete all left chars in the other word
# return max(i, j) + 1
# if word1[i] == word2[j]: # deletion is unnecessary
# return dfs(i - 1, j - 1)
# else: # try delete each one
# return 1 + min(dfs(i, j - 1) , dfs(i - 1, j))
# return dfs(m - 1, n - 1)
# dfs + memo to DP
dp = [[inf] * (n + 1) for _ in range(m + 1)]
for i in range(n + 1): # initialize the first row
dp[0][i] = i
for j in range(m + 1): # initialize the first col
dp[j][0] = j
for i, x in enumerate(word1):
for j, y in enumerate(word2):
if x == y:
dp[i + 1][j + 1] = dp[i][j]
else:
dp[i + 1][j + 1] = min(dp[i][j + 1], dp[i + 1][j]) + 1
# print(dp)
return dp[m][n]