目录
一、概述
1.1 promethues简介
promethues采集数据的方法很多,常用的是通过各种exporter去主机采集,然后有些程序是没有相关的exporter,所以有些时候会通过脚本采集服务的数据,还有一些程序的metrics自身也没有暴露,通过 脚本采集的方法也不常用,工作中java程序又比较常见,所以有人开发了jmx_prometheus_javaagent.jar专门用来采集java程序metrics的。
1.2 JMX Exporter简介
Java Management Extensions,JMX 是管理 Java 的一种扩展框架,JMX Exporter 基于此框架读取 JVM 的运行时状态。JMX Exporter 利用 Java 的 JMX 机制来读取 JVM 运行时的监控数据,然后将其转换为 Prometheus 可辨识的 metrics 格式,以便让 Prometheus 对其进行监控采集。
JMX Exporter 提供启动独立进程及 JVM 进程内启动(in-process)两种方式暴露 JVM 监控指标:
1. 启动独立进程 JVM 启动时指定参数,暴露 JMX 的 RMI 接口。JMX Exporter 调用 RMI 获取 JVM 运行时状态数据,转换为 Prometheus metrics 格式,并暴露端口让 Prometheus 采集。
2. JVM 进程内启动(in-process) JVM 启动时指定参数,通过 javaagent 的形式运行 JMX Exporter 的 jar 包,进程内读取 JVM 运行时状态数据,转换为 Prometheus metrics 格式,并暴露端口让 Prometheus 采集。
二、监控SparkHistoryServer实现
prometheus.yml
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
- localhost:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
- "alert_rules/*.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
- job_name: 'prometheus'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9090']
- job_name: 'grafana'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:3000']
- job_name: 'alertmanager'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9093']
- job_name: 'sparkhistoryserver' # historyserver
file_sd_configs:
- files:
- configs/sparkhistoryserver.json
configs/sparkhistoryserver.json 监控目标
[root@ddp01 prometheus]# cat configs/sparkhistoryserver.json
[
{
"targets":["ddp01:18082"]
}
]
alert_rules/spark3.yml 定义告警规则
[root@ddp01 prometheus]# cat alert_rules/spark3.yml
groups:
- name: SPARK3
# rules:定义规则
rules:
# alert:告警规则的名称
- alert: SparkHistoryServer进程存活
expr: up{job="sparkhistoryserver"} != 1
for: 15s
labels:
# severity: 指定告警级别。有三种等级,分别为warning、critical和emergency。严重等级依次递增。
severity: exception
clusterId: 1
serviceRoleName: SparkHistoryServer
annotations:
# summary描述告警的概要信息
# description用于描述告警的详细信息。
summary: 重新启动
description: "{{ $labels.job }}的{{ $labels.instance }}实例产生告警"
增加 SPARK_HISTORY_OPTS 环境变量, 也就是将spark程序与监控插件绑定
[root@ddp01 datasophon]# cat spark3/conf/spark-env.sh
export SPARK_DIST_CLASSPATH=$(/opt/datasophon/hadoop-3.3.3/bin/hadoop classpath)
export HADOOP_CONF_DIR=/opt/datasophon/hadoop-3.3.3/etc/hadoop
export YARN_CONF_DIR=/opt/datasophon/hadoop-3.3.3/etc/hadoop
export SPARK_CLASSPATH=/opt/datasophon/spark-3.1.3/carbonlib/*
export SPARK_HISTORY_OPTS="$SPARK_HISTORY_OPTS -javaagent:/opt/datasophon/spark-3.1.3/jmx/jmx_prometheus_javaagent-0.16.1.jar=18082:/opt/datasophon/spark-3.1.3/jmx/prometheus_config.yml"
jmx_prometheus_javaagent-0.16.1.jar 包位置
查看进程状态
rules
targats
原文链接:prometheus通过jmx_prometheus_javaagent-.jar采集java程序的metrics_jmx promethues-CSDN博客