到达时间差测量目标位置(TDOA)
基本原理
由数学原理可知,距离两个定点的距离差为常数的动点的轨迹为双曲线。而若要在三维空间里确定一个点,至少需要三个距离差,四个观测点。因此,利用TOOA定位,至少要有四个观测站。
现有坐标为 ( x , y , z ) (x,y,z) (x,y,z)的目标 T T T,有 M + 1 M+1 M+1个观测站,其中有一个主站 S 0 S_0 S0, M M M个副站 S i S_i Si,他们的坐标为 ( x i , y i , z i ) , i = 0 , 1 , ⋅ ⋅ ⋅ , M (x_i,y_i,z_i),i=0,1,···,M (xi,yi,zi),i=0,1,⋅⋅⋅,M。设电磁辐射由目标到达各站的时间为 t i ( i = 0 , 1 , 2 , ⋅ ⋅ ⋅ , M ) t_i(i=0,1,2,···,M) ti(i=0,1,2,⋅⋅⋅,M)。各副站到达时间与主站到达时间的时间差可写为 τ i ( i = 1 , 2 , ⋅ ⋅ ⋅ , M ) \tau_i(i=1,2,···,M) τi(i=1,2,⋅⋅⋅,M)。
将到达时间差乘光速,可得 T T T到各副站到总站的距离差
Δ r i = c τ i \Delta r_i=c\tau_i Δri=cτi
这个距离差还可由目标到主站的距离减去目标到副站的距离直接得到,即
Δ r i = r i − r 0 = [ ( x − x i ) 2 + ( y − y i ) 2 + ( z − z i ) 2 ] 1 2 − [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 1 2 \Delta r_i = r_i - r_0=[(x-x_i)^2+(y-y_i)^2+(z-z_i)^2]^{\frac{1}{2}}-[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]^{\frac{1}{2}} Δri=ri−r0=[(x−xi)2+(y−yi)2+(z−zi)2]21−[(x−x0)2+(y−y0)2+(z−z0)2]21
可得
( Δ r i + r 0 ) 2 = r i 2 = ( x − x i ) 2 + ( y − y i ) 2 + ( z − z i ) 2 (\Delta r_i+r_0)^2=r_i^2=(x-x_i)^2+(y-y_i)^2+(z-z_i)^2 (Δri+r0)2=ri2=(x−xi)2+(y−yi)2+(z−zi)2
两边同减去 r 0 2 r_0^2 r02
Δ r i 2 + 2 Δ r i r 0 = ( x − x i ) 2 + ( y − y i ) 2 + ( z − z i ) 2 − ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = 2 x ( x 0 − x i ) + 2 y ( y 0 − y i ) + 2 z ( z 0 − z i ) + ( x i 2 + y i 2 + z i 2 ) − ( x 0 2 + y 0 2 + z 0 2 ) \begin{aligned} \Delta r_i^2+2\Delta r_i r_0&=(x-x_i)^2+(y-y_i)^2+(z-z_i)^2-(x-x_0)^2+(y-y_0)^2+(z-z_0)^2\\ &=2x(x_0-x_i)+2y(y_0-y_i)+2z(z_0-z_i)+(x_i^2+y_i^2+z_i^2)-(x_0^2+y_0^2+z_0^2) \end{aligned} Δri2+2Δrir0=(x−xi)2+(y−yi)2+(z−zi)2−(x−x0)2+(y−y0)2+(z−z0)2=2x(x0−xi)+2y(y0−yi)+2z(z0−zi)+(xi2+yi2+zi2)−(x02+y02+z02)
令 d i 2 = x i 2 + y i 2 + z i 2 d_i^2=x_i^2+y_i^2+z_i^2 di2=xi2+yi2+zi2,则
Δ r i 2 + 2 Δ r i r 0 = 2 x ( x 0 − x i ) + 2 y ( y 0 − y i ) + 2 z ( z 0 − z i ) + d i 2 − d 0 2 \Delta r_i^2+2\Delta r_i r_0=2x(x_0-x_i)+2y(y_0-y_i)+2z(z_0-z_i)+d_i^2-d_0^2 Δri2+2Δrir0=2x(x0−xi)+2y(y0−yi)+2z(z0−zi)+di2−d02
整理可得
x ( x 0 − x i ) + y ( y 0 − y i ) + z ( z 0 − z i ) = Δ r i r 0 + Δ r i 2 + d o 2 − d i 2 2 x(x_0-x_i)+y(y_0-y_i)+z(z_0-z_i)=\Delta r_ir_0+\frac{\Delta r_i^2+d_o^2-d_i^2}{2} x(x0−xi)+y(y0−yi)+z(z0−zi)=Δrir0+2Δri2+do2−di2
上述方程应有 i = 1 , 2 , ⋅ ⋅ ⋅ , M 个 i=1,2,···,M个 i=1,2,⋅⋅⋅,M个, x , y , z x,y,z x,y,z是未知数,将它改写为矩阵形式,如下:
[ x 1 − x 0 y 1 − y 0 z 1 − z 0 x 2 − x 0 y 2 − y 0 z 2 − z 0 ⋮ ⋮ ⋮ x M − x 0 y M − y 0 z M − z 0 ] [ x y z ] = [ − Δ r 1 − Δ r 2 ⋮ − Δ r M ] r 0 + [ l 1 l 2 ⋮ l M ] 其 中 , l i = d i 2 − d 0 2 − Δ r i 2 2 \begin{bmatrix} x_1-x_0 & y_1-y_0 & z_1-z_0\\ x_2-x_0 & y_2-y_0 & z_2-z_0\\ \vdots & \vdots & \vdots \\ x_M-x_0 & y_M-y_0 &z_M-z_0 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix}= \begin{bmatrix} -\Delta r_1\\ -\Delta r_2\\ \vdots\\ -\Delta r_M \end{bmatrix}r_0+ \begin{bmatrix} l_1\\ l_2\\ \vdots\\ l_M \end{bmatrix}其中,l_i=\frac{d_i^2-d_0^2-\Delta r_i^2}{2} ⎣⎢⎢⎢⎡x1−x0x2−x0⋮xM−x0y1−y0y2−y0⋮yM−y0z1−z0z2−z0⋮zM−z0⎦⎥⎥⎥⎤⎣⎡xyz⎦⎤=⎣