Bootstrap

标注工具 X-AnyLabeling | AI 推理引擎 | 自动标注 | 支持多种视觉任务

在数据标注中,X-AnyLabeling 是一款强大的工具,它集成了先进的 AI 推理引擎和丰富的功能特性

专注于实际应用场景,具备高度的自主学习和自动化能力,大幅减少了重复性标注工作上的时间投入。

X-AnyLabeling 支持多种视觉任务的标注:

  • 支持GPU加速推理。
  • 支持一键预测所有图像。
  • 支持图像视频处理。
  • 支持自定义模型和二次开发。
  • 支持一键导入和导出多种标签格式,如 COCO\VOC\YOLO\DOTA\MOT\MASK\PPOCR 等;
  • 支持多种图像标注样式,包括 多边形矩形旋转框圆形线条,以及 文本检测识别 和 KIE 标注;
  • 支持各类视觉任务,如图像分类目标检测实例分割姿态估计旋转检测多目标跟踪光学字符识别图像文本描述车道线检测分割一切等。

X-AnyLabeling 的核心优势在于其能够高效自动地处理各种复杂的标注任务。

无论是精细的物体分割还是大规模的数据标注,X-AnyLabeling 都能够以卓越的精度和速度完成。

标注界面,如下所示:

点击“Language”可以选择中文模式的

开源地址:https://github.com/CVHub520/X-AnyLabeling/tree/main

安装指南:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/get_started.md

用户手册:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/user_guide.md

模型库参考:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/model_zoo.md

X-AnyLabeling提供多种模型库

更多模型库参考:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/model_zoo.md

1、图像分类

名称描述配置大小链接
pulc_person_attribute.onnxPersonAttribute-PULCpulc_person_attribute.yaml6.59MB百度网盘 | GitHub
pulc_vehicle_attribute.onnxVehicleAttribute-PULCpulc_vehicle_attribute.yaml6.55MB百度网盘 | GitHub
internimage_l_22kto1k_384.onnxInternImage-Largeinternimage_l_22kto1k_384.yaml853.16MB百度网盘 | GitHub
yolov5s-cls.onnxYOLOv5-Cls-ImageNetyolov5s_cls.yaml20.81MB百度网盘 | GitHub
yolov8s-cls.onnxYOLOv8-Cls-ImageNetyolov8s_cls.yaml24.28MB百度网盘 | GitHub
yolo11s-cls.onnxYOLO11-Cls-ImageNetyolo11s_cls.yaml25.67MB百度网盘 | GitHub

2、关键点检测

  • 脸部关键点检测
名称描述配置大小链接
yolov6lite_l_face.onnxFacial Landmark Detectionyolov6lite_l_face.yaml4.16MB百度网盘 | github
yolov6lite_m_face.onnxFacial Landmark Detectionyolov6lite_m_face.yaml3.00MB百度网盘 | github
yolov6lite_s_face.onnxFacial Landmark Detectionyolov6lite_s_face.yaml2.10MB百度网盘 | github
  • 姿态估计
名称描述配置大小链接
yolo11s-pose.onnxYOLO11-COCOyolo11s_pose.yaml38.09MB百度网盘 | github
yolov8n-pose.onnxYOLOv8-COCOyolov8n_pose.yaml12.75MB百度网盘 | github
yolov8x-pose-p6.onnxYOLOv8-COCOyolov8x_pose_p6.yaml378.92MB百度网盘 | github
dw-ll_ucoco_384.onnxDWPose(人体 2d 关键点)yolox_l_dwpose_ucoco.yaml128.17MB百度网盘 | github
yolox_l.onnxYOLOX(人体 2d 关键点)yolox_l_dwpose_ucoco.yaml206.71MB百度网盘 | github
rtmo_m.onnxRTMO(人体 2d 关键点)rtmdet_m_coco_person_rtmo_m.yaml85.13MB百度网盘 | github
rtmdet_m_640-8xb32_coco-person.onnxRTMDet(人体 2d 关键点)rtmdet_m_640-8xb32_coco-person.onnx104.25MB百度网盘 | github

3、车道线检测

名称描述配置大小链接
clrnet_tusimple_r18.onnxCLRNet-Tusimple (CVPR2022)clrnet_tusimple_r18.yaml59.04MB百度网盘 | github

4、多目标追踪

名称描述配置大小链接
yolov5s.onnxYOLOv5s-Det-BoT-SORTyolov5s_det_botsort.yaml27.98MB百度网盘 | github
yolov8s.onnxYOLOv8s-Det-BoT-SORTyolov8s_det_botsort.yaml42.75MB百度网盘 | github
yolov8n_obb_car_bus.onnxYOLOv8n-Obb-BoT-SORTyolov8n_obb_botsort.yaml12.02MB百度网盘 | github
yolov8m-seg.onnxYOLOv8m-Seg-Bytetrackyolov8m_seg_bytetrack.yaml104.23MB百度网盘 | github
yolov8x-pose-p6.onnxYOLOv8x-Pose-P6-BoT-SORTyolov8x_pose_p6_botsort.yaml378.92MB百度网盘 | github
yolo11s.onnxYOLO11s-Det-BoT-SORTyolo11s_det_botsort.yaml36.27MB百度网盘 | github
yolo11s_obb_car_bus.onnxYOLO11s-Obb-BoT-SORTyolo11s_obb_botsort.yaml37.36MB百度网盘 | github
yolo11s-seg.onnxYOLO11s-Seg-BoT-SORTyolo11s_seg_botsort.yaml38.77MB百度网盘 | github
yolo11s-pose.onnxYOLO11s-Pose-BoT-SORTyolo11s_pose_botsort.yaml38.09MB百度网盘 | github

5、目标检测

  • 水平目标检测
名称描述配置大小链接
damoyolo_tinynasL20_T_420.onnxDAMO-YOLO-COCOdamo_yolo_t.yaml32.45MB百度网盘 | github
damoyolo_tinynasL25_S_460.onnxDAMO-YOLO-COCOdamo_yolo_s.yaml62.09MB百度网盘 | github
damoyolo_tinynasL35_M_492.onnxDAMO-YOLO-COCOdamo_yolo_m.yaml107.58MB百度网盘 | github
damoyolo_tinynasL45_L_508.onnxDAMO-YOLO-COCOdamo_yolo_l.yaml160.52MB百度网盘 | github
Gold_n_dist.onnxGold-YOLO-COCOgold_yolo_n.yaml23.58MB百度网盘 | github
Gold_s_pre_dist.onnxGold-YOLO-COCOgold_yolo_s.yaml89.06MB百度网盘 | github
Gold_m_pre_dist.onnxGold-YOLO-COCOgold_yolo_m.yaml169.88MB百度网盘 | github
Gold_l_pre_dist.onnxGold-YOLO-COCOgold_yolo_l.yaml286.79MB百度网盘 | github
rtdetr_r50vd_6x_coco.onnxRT-DETR-COCOrtdetr_r50.yaml160.96MB百度网盘 | github
rtdetrv2_r101vd_6x_coco.onnxRT-DETRv2-X-COCOrtdetrv2x.yaml286.48MB百度网盘 | github
rtdetrv2_r50vd_6x_coco.onnxRT-DETRv2-L-COCOrtdetrv2l.yaml161.38MB百度网盘 | github
rtdetrv2_r50vd_m_7x_coco.onnxRT-DETRv2-M*-COCOrtdetrv2m7x.yaml126.52MB百度网盘 | github
rtdetrv2_r34vd_120e_coco.onnxRT-DETRv2-M-COCOrtdetrv2m.yaml119.73MB百度网盘 | github
rtdetrv2_r18vd_120e_coco.onnxRT-DETRv2-S-COCOrtdetrv2s.yaml76.80MB百度网盘 | github
yolo_nas_l.onnxYOLO-NAS-COCOyolo_nas_l.yaml160.38MB百度网盘 | github
yolo_nas_m.onnxYOLO-NAS-COCOyolo_nas_m.yaml121.87MB百度网盘 | github
yolo_nas_s.onnxYOLO-NAS-COCOyolo_nas_s.yaml46.62MB百度网盘 | github
yolov5x.onnxYOLOv5-COCOyolov5x.yaml331.19MB百度网盘 | github
yolov5l.onnxYOLOv5-COCOyolov5l.yaml177.94MB百度网盘 | github
yolov5m.onnxYOLOv5-COCOyolov5m.yaml81.19MB百度网盘 | github
yolov5s.onnxYOLOv5-COCOyolov5s.yaml27.98MB百度网盘 | github
yolov5n.onnxYOLOv5-COCOyolov5n.yaml7.54MB百度网盘 | github
yolov6x_mbla.onnxYOLOv6-COCOyolov6x_mbla.yaml300.95MB百度网盘 | github
yolov6l_mbla.onnxYOLOv6-COCOyolov6l_mbla.yaml176.72MB百度网盘 | github
yolov6m_mbla.onnxYOLOv6-COCOyolov6m_mbla.yaml99.61MB百度网盘 | github
yolov6s_mbla.onnxYOLOv6-COCOyolov6s_mbla.yaml44.49MB百度网盘 | github
yolov6s.onnxYOLOv6-COCOyolov6s.yaml70.88MB百度网盘 | github
yolov6s6.onnxYOLOv6-COCOyolov6s6.yaml158.47MB百度网盘 | github
yolov7.onnxYOLOv7-COCOyolov7.yaml140.90MB百度网盘 | github
yolov8x.onnxYOLOv8-COCOyolov8x.yaml260.37MB百度网盘 | github
yolov8l.onnxYOLOv8-COCOyolov8l.yaml166.79MB百度网盘 | github
yolov8m.onnxYOLOv8-COCOyolov8m.yaml98.94MB百度网盘 | github
yolov8s.onnxYOLOv8-COCOyolov8s.yaml42.75MB百度网盘 | github
yolov8n.onnxYOLOv8-COCOyolov8n.yaml12.21MB百度网盘 | github
yolov8s.onnxYOLOv8 with SAHI-COCOyolov8s_sahi.yaml42.75MB百度网盘 | github
yolov8x6-oiv7.onnxYOLOv8-Open Image V7yolov8x6_oiv7.yaml374.51MB百度网盘 | github
yolov8x-oiv7.onnxYOLOv8-Open Image V7yolov8x_oiv7.yaml262.24MB百度网盘 | github
yolov8l-oiv7.onnxYOLOv8-Open Image V7yolov8l_oiv7.yaml168.28MB百度网盘 | github
yolov8m-oiv7.onnxYOLOv8-Open Image V7yolov8m_oiv7.yaml100.05MB百度网盘 | github
yolov8s-oiv7.onnxYOLOv8-Open Image V7yolov8s_oiv7.yaml43.47MB百度网盘 | github
yolov8n-oiv7.onnxYOLOv8-Open Image V7yolov8n_oiv7.yaml13.47MB百度网盘 | github
yolov9c.onnxYOLOv9-COCOyolov9c.yaml195.34MB百度网盘 | github
yolov9e.onnxYOLOv9-COCOyolov9e.yaml265.43MB百度网盘 | github
gelan-c.onnxYOLOv9-COCOgelan-c.yaml97.43MB百度网盘 | github
gelan-e.onnxYOLOv9-COCOgelan-e.yaml221.94MB百度网盘 | github
yolov10n.onnxYOLOv10-COCOyolov10n.yaml8.98MB百度网盘 | github
yolov10s.onnxYOLOv10-COCOyolov10s.yaml27.86MB百度网盘 | github
yolov10m.onnxYOLOv10-COCOyolov10m.yaml58.81MB百度网盘 | github
yolov10b.onnxYOLOv10-COCOyolov10b.yaml72.95MB百度网盘 | github
yolov10l.onnxYOLOv10-COCOyolov10l.yaml93.20MB百度网盘 | github
yolov10x.onnxYOLOv10-COCOyolov10x.yaml112.68MB百度网盘 | github
yolo11s.onnxYOLO11-COCOyolo11s.yaml36.27MB百度网盘 | github
  • 旋转目标检测(OBB)
名称描述配置大小链接
yolov5n_obb_drone_vehicle.onnxYOLOv5-OBB-DroneVehicleyolov5n_obb_drone_vehicle.yaml8.39MB百度网盘 | github
yolov5s_obb_csl_dotav10.onnxYOLOv5-OBB-DOTA-v1.0yolov5s_obb_csl_dotav10.yaml29.77MB百度网盘 | github
yolov5m_obb_csl_dotav15.onnxYOLOv5-OBB-DOTA-v1.5yolov5m_obb_csl_dotav15.yaml83.59MB百度网盘 | github
yolov5m_obb_csl_dotav20.onnxYOLOv5-OBB-DOTA-v2.0yolov5m_obb_csl_dotav20.yaml83.62MB百度网盘 | github
yolov8s-obb.onnxYOLOv8-OBB-DOTA-v1.0yolov8s_obb.yaml43.84MB百度网盘 | github
yolo11s-obb.onnxYOLO11s-Obb-DOTA-v1.0yolo11s_obb.yaml37.36MB百度网盘 | github

6、光学字符识别

名称描述配置大小链接
doclayout_yolo_docstructbench_imgsz1024.onnx文档版面分析模型doclayout_yolo.yaml72.22MB百度网盘 | github
ch_PP-OCRv4_det_infer.onnx超轻量模型,支持中英文、多语种文本检测模型ch_ppocr_v4.yaml4.53MB百度网盘 | github
ch_ppocr_mobile_v2.0_cls_infer.onnx原始分类器模型,对检测到的文本行文字角度分类ch_ppocr_v4.yaml569KB百度网盘 | github
ch_PP-OCRv4_rec_infer.onnxUltra-lightweight model supporting Chinese, English, and digits recognition modelch_ppocr_v4.yaml10.33MB百度网盘 | github
ch_PP-OCRv4_det_infer.onnx超轻量模型,支持中英文、多语种文本检测模型japan_ppocr.yaml4.53MB百度网盘 | github
ch_ppocr_mobile_v2.0_cls_infer.onnx原始分类器模型,对检测到的文本行文字角度分类japan_ppocr.yaml569KB百度网盘 | github
japan_PP-OCRv3_rec_infer.onnx超轻量日文识别模型japan_ppocr.yaml9.62MB百度网盘 | github

7、分割一切模型

  • 通用场景
名称描述配置大小链接
sam2_hiera_tiny.encoder.onnxSAM2sam2_hiera_tiny.yaml128.04MB百度网盘 | github
sam2_hiera_tiny.decoder.onnxSAM2sam2_hiera_tiny.yaml19.68MB百度网盘 | github
sam2_hiera_small.encoder.onnxSAM2sam2_hiera_small.yaml155.17MB百度网盘 | github
sam2_hiera_small.decoder.onnxSAM2sam2_hiera_small.yaml19.68MB百度网盘 | github
sam2_hiera_base_plus.encoder.onnxSAM2sam2_hiera_base.yaml324.04MB百度网盘 | github
sam2_hiera_base_plus.decoder.onnxSAM2sam2_hiera_base.yaml19.68MB百度网盘 | github
sam2_hiera_large.encoder.onnxSAM2sam2_hiera_large.yaml848.16MB百度网盘 | github
sam2_hiera_large.decoder.onnxSAM2sam2_hiera_large.yaml19.68MB百度网盘 | github
edge_sam_encoder.onnxEdgeSAMedge_sam.yaml21.02MB百度网盘 | github
edge_sam_decoder.onnxEdgeSAMedge_sam.yaml17.78MB百度网盘 | github
sam_vit_b_01ec64.encoder.onnxSAM ViT-base encodersegment_anything_vit_b.yaml342.58MB百度网盘 | github
sam_vit_b_01ec64.decoder.onnxSAM ViT-base decodersegment_anything_vit_b.yaml15.74MB百度网盘 | github
sam_vit_b_01ec64.encoder.quant.onnxSAM ViT-base encoder(量化版本)segment_anything_vit_b_quant.yaml103.78MB百度网盘 | github
sam_vit_b_01ec64.decoder.quant.onnxSAM ViT-base decoder(量化版本)segment_anything_vit_b_quant.yaml8.34MB百度网盘 | github
sam_vit_l_0b3195.encoder.onnxSAM ViT-large encodersegment_anything_vit_l.yaml1.15GB百度网盘 | github
sam_vit_l_0b3195.decoder.onnxSAM ViT-large decodersegment_anything_vit_l.yaml15.74MB百度网盘 | github
sam_vit_l_0b3195.encoder.quant.onnxSAM ViT-large encoder(量化版本)segment_anything_vit_l_quant.yaml317.18MB百度网盘 | github
sam_vit_l_0b3195.decoder.quant.onnxSAM ViT-large decoder(量化版本)segment_anything_vit_l_quant.yaml8.34MB百度网盘 | github
mobile_sam.encoder.onnxMobileSAM encodermobile_sam_vit_h.yaml26.85MB百度网盘 | github
sam_vit_h_4b8939.decoder.quant.onnxMobileSAM decodermobile_sam_vit_h.yaml8.34MB百度网盘 | github
sam_vit_h_4b8939.encoder.quant.onnxSAM ViT-huge encoder(量化版本)segment_anything_vit_h_quant.yaml626.40MB百度网盘 | github
sam_vit_h_4b8939.decoder.quant.onnxSAM ViT-huge decoder(量化版本)segment_anything_vit_h_quant.yaml8.34MB百度网盘 | github
efficientvit_sam_l0_vit_h.encoder.onnxEfficientViT-SAM ViT-huge encoderefficientvit_sam_l0_vit_h.yaml117.25MB百度网盘 | github
efficientvit_sam_l0_vit_h.decoder.onnxEfficientViT-SAM ViT-huge decoderefficientvit_sam_l0_vit_h.yaml15.63MB百度网盘 | github
efficientvit_sam_l1_vit_h.encoder.onnxEfficientViT-SAM ViT-huge encoderefficientvit_sam_l1_vit_h.yaml166.31MB百度网盘 | github
efficientvit_sam_l1_vit_h.decoder.onnxEfficientViT-SAM ViT-huge decoderefficientvit_sam_l1_vit_h.yaml15.63MB百度网盘 | github
sam_hq_vit_b_encoder.onnxHQ-SAM ViT-base encodersam_hq_vit_b.yaml342.37MB百度网盘 | github
sam_hq_vit_b_decoder.onnxHQ-SAM ViT-base decodersam_hq_vit_b.yaml19.74MB百度网盘 | github
sam_hq_vit_l_encoder.onnxHQ-SAM ViT-large encodersam_hq_vit_l.yaml1.15GB百度网盘 | github
sam_hq_vit_l_decoder.onnxHQ-SAM ViT-large decodersam_hq_vit_l.yaml20.74MB百度网盘 | github
sam_hq_vit_l_encoder_quant.onnxHQ-SAM ViT-large encoder(量化版本)sam_hq_vit_l_quant.yaml307.96MB百度网盘 | github
sam_hq_vit_l_decoderHQ-SAM ViT-large decodersam_hq_vit_l_quant.yaml20.74MB百度网盘 | github
sam_hq_vit_h_encoder_quant.onnxHQ-SAM ViT-huge encoder(量化版本)sam_hq_vit_h_quant.yaml625.55MB百度网盘 | github
sam_hq_vit_h_decoderHQ-SAM ViT-huge decodersam_hq_vit_h_quant.yaml21.74MB百度网盘 | github
  • 医学场景
名称描述配置大小链接
sam-med2d_b.encoder.onnxSAM-Med2D ViT-base encodersam_med2d_vit_b.yaml1019.49MB百度网盘 | github
sam-med2d_b.decoder.onnxSAM-Med2D ViT-base decodersam_med2d_vit_b.yaml15.60MB百度网盘 | github
medsam_vit_b.encoder.onnxMedSAM ViT-base encodermedsam_vit_b.yaml342.58MB百度网盘 | github
medsam_vit_b.decoder.onnxMedSAM ViT-base decodermedsam_vit_b.yaml15.74MB百度网盘 | github
sam_model_best_large_ssl_buidnewprocess.encoder.onnxLVMSAM-超声乳腺癌分割模型 ViT-base encoderlvm_sam_ssk_buid_vit_b.yaml342.58MB百度网盘 | github
sam_model_best_large_ssl_buidnewprocess.decoder.onnxLVMSAM-超声乳腺癌分割模型 ViT-base decoderlvm_sam_ssk_buid_vit_b.yaml15.74MB百度网盘 | github
sam_model_best_large_ssl_isiconlytrain.encoder.onnxLVMSAM-皮肤镜病灶分割模型 ViT-base encoderlvm_sam_ssk_isic_vit_b.yaml342.58MB百度网盘 | github
sam_model_best_large_ssl_isiconlytrain.decoder.onnxLVMSAM-皮肤镜病灶分割模型 ViT-base decoderlvm_sam_ssk_isic_vit_b.yaml15.74MB百度网盘 | github
sam_model_best_large_ssl_kvasir.encoder.onnxLVMSAM-结直肠息肉分割模型 ViT-base encoderlvm_sam_ssk_kvasir_vit_b.yaml342.58MB百度网盘 | github
sam_model_best_large_ssl_kvasir.decoder.onnxLVMSAM-结直肠息肉分割模型 ViT-base decoderlvm_sam_ssk_kvasir_vit_b.yaml15.74MB百度网盘 | github

8、图像分割

名称描述配置大小链接
yolov5s-seg.onnxYOLOv5-COCOyolov5s_seg.yaml29.45MB百度网盘 | github
yolov8x-seg.onnxYOLOv8-COCOyolov8x_seg.yaml274.10MB百度网盘 | github
yolov8l-seg.onnxYOLOv8-COCOyolov8l_seg.yaml175.59MB百度网盘 | github
yolov8m-seg.onnxYOLOv8-COCOyolov8m_seg.yaml104.23MB百度网盘 | github
yolov8s-seg.onnxYOLOv8-COCOyolov8s_seg.yaml45.25MB百度网盘 | github
yolov8n-seg.onnxYOLOv8-COCOyolov8n_seg.yaml13.18MB百度网盘 | github
yolo11s-seg.onnxYOLO11-COCOyolo11s_seg.yaml38.77MB百度网盘 | github

9、图像抠图

名称描述配置大小链接
bria-rmbg-1.4.onnxRMBG v1.4 (BRIA AI)rmbg_v14.yaml167.99MB百度网盘 | github

10、多任务

名称描述配置大小链接
resnet50.onnxResNet50-ImageNet(检测+分类级联模型)yolov5s_resnet50.yaml97.42MB百度网盘 | github
yolov5s.onnxYOLOv5-COCO(检测+分类级联模型)yolov5s_resnet50.yaml27.98MB百度网盘 | github
mobile_sam.encoder.onnxMobileSAM encoder(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml26.85MB百度网盘 | github
sam_vit_h_4b8939.decoder.quant.onnxMobileSAM decoder(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml8.34MB百度网盘 | github
yolov5s.onnxYOLOv5-COCO(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml27.98MB百度网盘 | github
efficientvit_sam_l0_vit_h.encoder.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml117.25MB百度网盘 | github
efficientvit_sam_l0_vit_h.decoder.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml15.63MB百度网盘 | github
yolov8n.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml12.21MB百度网盘 | github
yolov5m.onnxYOLOv5-RAMyolov5m_ram.yaml81.19MB百度网盘 | github
ram_swin_large_14m.onnxYOLOv5-RAMyolov5m_ram.yaml865.66MB百度网盘 | github
yolov5_plate_detect.onnxYOLOv5(车牌识别)yolov5_car_plate.yaml3.65MB百度网盘 | github
yolov5_plate_rec_color.onnxYOLOv5(车牌识别)yolov5_car_plate.yaml702KB百度网盘 | github
edge_sam_encoder.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml21.02MB百度网盘 | github
edge_sam_decoder.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml17.78MB百度网盘 | github
vit-b-16.img.fp16.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml3.51MB百度网盘 | github
vit-b-16.txt.fp16.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml2.15MB百度网盘 | github
vit-b-16.img.fp16.onnx.extra_fileEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml164.40MB百度网盘 | github
vit-b-16.txt.fp16.onnx.extra_fileEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml194.68MB百度网盘 | github
groundingdino_swint_ogc_quant.onnxGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml964.04MB百度网盘 | github
sam_hq_vit_l_encoder_quant.onnxGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml307.96MB百度网盘 | github
sam_hq_vit_l_decoderGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml20.74MB百度网盘 | github
sam2_hiera_large.encoder.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml848.16MB百度网盘 | github
sam2_hiera_large.decoder.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml19.68MB百度网盘 | github
groundingdino_swint_ogc_quant.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml171.28MB百度网盘 | github

11、Open-Set Grounded Model

名称描述配置大小链接
yolov8x-worldv2.onnxYOLOv8-COCOyolov8x_worldv2.yaml276.38MB百度网盘 | github
yolov8l-worldv2-cc3m.onnxYOLOv8-CC3Myolov8l_worldv2_cc3m.yaml177.39MB百度网盘 | github
yolov8l-worldv2.onnxYOLOv8-COCOyolov8l_worldv2.yaml177.39MB百度网盘 | github
yolov8m-worldv2.onnxYOLOv8-COCOyolov8m_worldv2.yaml107.21MB百度网盘 | github
yolov8s-worldv2.onnxYOLOv8-COCOyolov8s_worldv2.yaml47.97MB百度网盘 | github
groundingdino_swint_ogc_quant.onnxGroundingDINOgroundingdino_swint_ogc_quant.yaml171.28MB百度网盘 | github
groundingdino_swinb_cogcoor_quant.onnxGroundingDINOgroundingdino_swinb_cogcoor_quant.yaml258.90MB百度网盘 | github
ram_swin_large_14m.onnxRecognize Anythingram_swin_large_14m.yaml865.66MB百度网盘 | github
ram_plus_swin_large_14m.onnxRecognize Anything Pluseram_plus_swin_large_14m.yaml1.74GB百度网盘 | github

12、深度估计

名称描述配置大小链接
depth_anything_vits14.onnxDepthAnythingdepth_anything_vit_s.yaml94.48MB百度网盘 | github
depth_anything_vitb14.onnxDepthAnythingdepth_anything_vit_b.yaml370.91MB百度网盘 | github
depth_anything_vitl14.onnxDepthAnythingdepth_anything_vit_l.yaml1.25GB百度网盘 | github
depth_anything_v2_vits.onnxDepthAnythingV2depth_anything_v2_vit_s.yaml94.77MB百度网盘 | github
depth_anything_v2_vitb.onnxDepthAnythingV2depth_anything_v2_vit_b.yaml371.20MB百度网盘 | github
depth_anything_v2_vitl.onnxDepthAnythingV2depth_anything_v2_vit_l.yaml1.25GB百度网盘 | github

13、交互式视频目标分割

名称描述配置大小链接
sam2_hiera_tiny.ptSAM 2sam2_hiera_tiny_video.yaml148.68MB百度网盘 | github
sam2_hiera_small.ptSAM 2sam2_hiera_small_video.yaml175.77MB百度网盘 | github
sam2_hiera_base_plus.ptSAM 2sam2_hiera_base_video.yaml308.51MB百度网盘 | github
sam2_hiera_large.ptSAM 2sam2_hiera_large_video.yaml856.35MB百度网盘 | github

X-AnyLabeling教程示例

目标检测,标注示例

深度估计标注示例

关键点姿态估计,标注示例

视频分割,标注示例

分享完成~

;