我们基本上将模型组件分为5种类型。
backbone:通常是一个FCN网络提取特征地图,如ResNet, MobileNet。
neck:在脊骨和头部之间的部位,如:FPN, PAFPN…
head:用于特定任务的组件,如框预测、掩码预测等。
roi提取器:用于从特征映射中提取Rol特征的部分,如Rol Align。
loss:头部用于计算损耗的组件,如FocalLoss, L1Loss, GHMLoss。
1 开发新的组件
1 Add a new backbone(添加新主干)
这里我们将以MobileNet为例展示如何开发新组件。
1 定义一个新的主干(例如MobileNet)
Create a new file mmdet/models/backbones/mobilenet.py.
import torch.nn as nn
from ..builder import BACKBONES
@BACKBONES.register_module()
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(self, x): # should return a tuple
pass
2、Import the module(导入模块)
You can either add the following line to mmdet/models/backbones/init.py
from .mobilenet import MobileNet
or alternatively add
custom_imports = dict(
imports=['mmdet.models.backbones.mobilenet'],
allow_failed_imports=False)
配置文件,以避免修改原始代码。
3. Use the backbone in your config file(在你的配置文件中使用主干)
model = dict(
...
backbone=dict(
type='MobileNet',
arg1=xxx,
arg2=xxx),
...
2 Add new necks(添加新的脖子)
1. Define a neck (e.g. PAFPN)
Create a new file mmdet/models/necks/pafpn.py.
from ..builder import NECKS
@NECKS.register_module()
class PAFPN(nn.Module):
def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
add_extra_convs=False):
pass
def forward(self, inputs):
# implementation is ignored
pass
2. Import the module
You can either add the following line to mmdet/models/necks/init.py,
from .pafpn import PAFPN
or alternatively add
custom_imports = dict(
imports=['mmdet.models.necks.pafpn.py'],
allow_failed_imports=False)
to the config file and avoid modifying the original code.
3. Modify the config file
neck=dict(
type='PAFPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5)
3 Add new heads(添加一个新的头)
在这里,我们展示了如何开发一个新的头部与双头部R-CNN的例子如下。
首先,在mmdet/models/roi_heads/bbox_heads/double_bbox_head.py中添加一个新的box头。双头R-CNN实现了一种新的盒头用于目标检测。为了实现一个盒头,我们基本上需要实现新模块的三个功能,如下所示。
from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead
@HEADS.register_module()
class DoubleConvFCBBoxHead(BBoxHead):
r"""Bbox head used in Double-Head R-CNN
/-> cls
/-> shared convs ->
\-> reg
roi features
/-> cls
\-> shared fc ->
\-> reg
""" # noqa: W605
def __init__(self,
num_convs=0,
num_fcs=0,
conv_out_channels=1024,
fc_out_channels=1024,
conv_cfg=None,
norm_cfg=dict(type='BN'),
**kwargs):
kwargs.setdefault('with_avg_pool', True)
super(DoubleConvFCBBoxHead, self).__init__(**kwargs)
def forward(self, x_cls, x_reg):
第二,如果有必要,实施一个新的Rol Head。我们计划从standard droihead继承新的DoubleHeadRoIHead。我们可以发现标准droihead已经实现了以下功能。
import torch
from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler
from ..builder import HEADS, build_head, build_roi_extractor
from .base_roi_head import BaseRoIHead
from .test_mixins import BBoxTestMixin, MaskTestMixin
@HEADS.register_module()
class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin):
"""Simplest base roi head including one bbox head and one mask head.
"""
def init_assigner_sampler(self):
def init_bbox_head(self, bbox_roi_extractor, bbox_head):
def init_mask_head(self, mask_roi_extractor, mask_head):
def forward_dummy(self, x, proposals):
def forward_train(self,
x,
img_metas,
proposal_list,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
gt_masks=None):
def _bbox_forward(self, x, rois):
def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
img_metas):
def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
img_metas):
def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None):
def simple_test(self,
x,
proposal_list,
img_metas,
proposals=None,
rescale=False):
"""Test without augmentation."""
最后,用户需要在mmdet/models/bbox_heads/init.py和mmdet/models/roi_heads/init.py中添加模块,这样相应的注册表就可以找到并加载它们。
custom_imports=dict(
imports=['mmdet.models.roi_heads.double_roi_head', 'mmdet.models.bbox_heads.double_bbox_head'])
到配置文件,并实现相同的目标。
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
roi_head=dict(
type='DoubleHeadRoIHead',
reg_roi_scale_factor=1.3,
bbox_head=dict(
_delete_=True,
type='DoubleConvFCBBoxHead',
num_convs=4,
num_fcs=2,
in_channels=256,
conv_out_channels=1024,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0))))
从MMDetection 2.0开始,配置系统支持继承配置,这样用户就可以专注于修改。DoubleHead R-CNN主要使用了一个新的DoubleHeadRolHead和一个新的doubeconvfcbboxhead,参数是根据每个模块的_init_函数来设置的。
4 Add new loss(添加新的损失)
假设您想添加一个新的损失作为MyLoss,用于边界框回归。要添加一个新的损失函数,用户需要在mmdet/models/losses/my_loss.py中实现它。The decorator weighted_loss enable the loss to be weighted for each element.
import torch
import torch.nn as nn
from ..builder import LOSSES
from .utils import weighted_loss
@weighted_loss
def my_loss(pred, target):
assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss
@LOSSES.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
super(MyLoss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * my_loss(
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox
Then the users need to add it in the mmdet/models/losses/init.py.
from .my_loss import MyLoss, my_loss
Alternatively, you can add
custom_imports=dict(
imports=['mmdet.models.losses.my_loss'])
to the config file and achieve the same goal.
To use it, modify the loss_xxx field. Since MyLoss is for regression, you need to modify the loss_bbox field in the head.
oss_bbox=dict(type='MyLoss', loss_weight=1.0))