Bootstrap

U2Net网络的建立、训练(以眼球数据集为例)

网络主体,文件名u2net

import torch
import torch.nn as nn
import torch.nn.functional as F


# 卷积层
class REBNCONV(nn.Module):
    def __init__(self, in_ch=3, out_ch=3, dirate=1):
        super(REBNCONV, self).__init__()
        # 试试 padding = dilation 的输出效果
        self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate)
        self.bn_s1 = nn.BatchNorm2d(out_ch)
        # inplace=True:输出为地址传递,效率更高。
        self.relu_s1 = nn.ReLU(inplace=True)

    def forward(self, x):
        hx = x
        xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
        return xout


# 上采样
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
def _upsample_like(src, tar):
    # bilinear:线性插值法
    # size目标输出的尺寸
    # size = tar.shape[2:]只参考HW的值进行插值
    src = F.interpolate(src, size=tar.shape[2:], mode='bilinear')
    return src


### RSU-7 ###
class RSU7(nn.Module):
    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU7, self).__init__()
        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
        self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
        # 空洞卷积
        self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
        self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)

    def forward(self, x):
        hx = x
        # hxin最后做残差
        hxin = self.rebnconvin(hx)
        hx1 = self.rebnconv1(hxin)
        hx = self.pool1(hx1)
        hx2 = self.rebnconv2(hx)
        hx = self.pool2(hx2)
        hx3 = self.rebnconv3(hx)
        hx = self.pool3(hx3)
        hx4 = self.rebnconv4(hx)
        hx = self.pool4(hx4)
        hx5 = self.rebnconv5(hx)
        hx = self.pool5(hx5)
        hx6 = self.rebnconv6(hx)
        hx7 = self.rebnconv7(hx6)
        hx6d = self.rebnconv6d(torch.cat((hx7, hx6), dim=1))
        hx6dup = _upsample_like(hx6d, hx5)
        hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), dim=1))
        hx5dup = _upsample_like(hx5d, hx4)
        hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), dim=1))
        hx4dup = _upsample_like(hx4d, hx3)
        hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), dim=1))
        hx3dup = _upsample_like(hx3d, hx2)
        hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), dim=1))
        hx2dup = _upsample_like(hx2d, hx1)
        hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), dim=1))
        # 残差
        return hx1d + hxin


### RSU-6 ###
class RSU6(nn.Module):  # UNet06DRES(nn.Module):

    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU6, self).__init__()

        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
        # ceil_mode=True:天花板模式,参见输入数据的HW为单数时
        self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
        self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)

    def forward(self, x):
        hx = x
        hxin = self.rebnconvin(hx)
        hx1 = self.rebnconv1(hxin)
        hx = self.pool1(hx1)
        hx2 = self.rebnconv2(hx)
        hx = self.pool2(hx2)
        hx3 = self.rebnconv3(hx)
        hx = self.pool3(hx3)
        hx4 = self.rebnconv4(hx)
        hx = self.pool4(hx4)
        hx5 = self.rebnconv5(hx)
        hx6 = self.rebnconv6(hx5)
        hx5d = self.rebnconv5d(torch.cat((hx6, hx5), dim=1))
        hx5dup = _upsample_like(hx5d, hx4)
        hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), dim=1))
        hx4dup = _upsample_like(hx4d, hx3)
        hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), dim=1))
        hx3dup = _upsample_like(hx3d, hx2)
        hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), dim=1))
        hx2dup = _upsample_like(hx2d, hx1)
        hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), dim=1))
        return hx1d + hxin


### RSU-5 ###
class RSU5(nn.Module):  # UNet05DRES(nn.Module):

    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU5, self).__init__()
        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
        self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
        self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)

    def forward(self, x):
        hx = x
        hxin = self.rebnconvin(hx)
        hx1 = self.rebnconv1(hxin)
        hx = self.pool1(hx1)
        hx2 = self.rebnconv2(hx)
        hx = self.pool2(hx2)
        hx3 = self.rebnconv3(hx)
        hx = self.pool3(hx3)
        hx4 = self.rebnconv4(hx)
        hx5 = self.rebnconv5(hx4)
        hx4d = self.rebnconv4d(torch.cat((hx5, hx4), dim=1))
        hx4dup = _upsample_like(hx4d, hx3)
        hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), dim=1))
        hx3dup = _upsample_like(hx3d, hx2)
        hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), dim=1))
        hx2dup = _upsample_like(hx2d, hx1)
        hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), dim=1))
        return hx1d + hxin


### RSU-4 ###
class RSU4(nn.Module):  # UNet04DRES(nn.Module):
    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU4, self).__init__()
        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
        self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)

    def forward(self, x):
        hx = x
        hxin = self.rebnconvin(hx)
        hx1 = self.rebnconv1(hxin)
        hx = self.pool1(hx1)
        hx2 = self.rebnconv2(hx)
        hx = self.pool2(hx2)
        hx3 = self.rebnconv3(hx)
        hx4 = self.rebnconv4(hx3)
        hx3d = self.rebnconv3d(torch.cat((hx4, hx3), dim=1))
        hx3dup = _upsample_like(hx3d, hx2)
        hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), dim=1))
        hx2dup = _upsample_like(hx2d, hx1)
        hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), dim=1))
        return hx1d + hxin


### RSU-4F ###
class RSU4F(nn.Module):  # UNet04FRES(nn.Module):

    def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
        super(RSU4F, self).__init__()
        self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
        self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
        self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
        self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
        self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
        self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
        self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
        self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)

    def forward(self, x):
        hx = x
        hxin = self.rebnconvin(hx)
        hx1 = self.rebnconv1(hxin)
        hx2 = self.rebnconv2(hx1)
        hx3 = self.rebnconv3(hx2)
        hx4 = self.rebnconv4(hx3)
        hx3d = self.rebnconv3d(torch.cat((hx4, hx3), dim=1))
        hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), dim=1))
        hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), dim=1))
        return hx1d + hxin


##### U^2-Net ####
class U2NET(nn.Module):
    def __init__(self, in_ch=3, out_ch=1):
        super(U2NET, self).__init__()
        # encoder
        self.stage1 = RSU7(in_ch, 32, 64)
        self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage2 = RSU6(64, 32, 128)
        self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage3 = RSU5(128, 64, 256)
        self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage4 = RSU4(256, 128, 512)
        self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage5 = RSU4F(512, 256, 512)
        self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage6 = RSU4F(512, 256, 512)

        # decoder
        self.stage5d = RSU4F(1024, 256, 512)
        self.stage4d = RSU4(1024, 128, 256)
        self.stage3d = RSU5(512, 64, 128)
        self.stage2d = RSU6(256, 32, 64)
        self.stage1d = RSU7(128, 16, 64)
        # 定义6个输出层 output Layer
        self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
        self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
        self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
        self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
        self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
        self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)

        self.outconv = nn.Conv2d(6, out_ch, 1)

    def forward(self, x):
        hx = x
        # -------------------- encoder --------------------
        # stage 1
        hx1 = self.stage1(hx)
        hx = self.pool12(hx1)
        # stage 2
        hx2 = self.stage2(hx)
        hx = self.pool23(hx2)
        # stage 3
        hx3 = self.stage3(hx)
        hx = self.pool34(hx3)
        # stage 4
        hx4 = self.stage4(hx)
        hx = self.pool45(hx4)
        # stage 5
        hx5 = self.stage5(hx)
        hx = self.pool56(hx5)
        # stage 6
        hx6 = self.stage6(hx)
        hx6up = _upsample_like(hx6, hx5)
        # -------------------- decoder --------------------
        hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
        hx5dup = _upsample_like(hx5d, hx4)
        hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
        hx4dup = _upsample_like(hx4d, hx3)
        hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
        hx3dup = _upsample_like(hx3d, hx2)
        hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
        hx2dup = _upsample_like(hx2d, hx1)
        hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
        # side output
        d1 = self.side1(hx1d)
        d2 = self.side2(hx2d)
        d2 = _upsample_like(d2, d1)
        d3 = self.side3(hx3d)
        d3 = _upsample_like(d3, d1)
        d4 = self.side4(hx4d)
        d4 = _upsample_like(d4, d1)
        d5 = self.side5(hx5d)
        d5 = _upsample_like(d5, d1)
        d6 = self.side6(hx6)
        d6 = _upsample_like(d6, d1)
        d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
        # 模型输出是一个二值图, 二分类问题
        return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), \
               torch.sigmoid(d3), torch.sigmoid(d4), torch.sigmoid(d5), torch.sigmoid(d6)


### U^2-Net small ###
class U2NETP(nn.Module):
    # 结构没变, 卷积核的个数变少了, 那么参数就变少了
    def __init__(self, in_ch=3, out_ch=1):
        super(U2NETP, self).__init__()

        self.stage1 = RSU7(in_ch, 16, 64)
        self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage2 = RSU6(64, 16, 64)
        self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage3 = RSU5(64, 16, 64)
        self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage4 = RSU4(64, 16, 64)
        self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage5 = RSU4F(64, 16, 64)
        self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.stage6 = RSU4F(64, 16, 64)

        # decoder
        self.stage5d = RSU4F(128, 16, 64)
        self.stage4d = RSU4(128, 16, 64)
        self.stage3d = RSU5(128, 16, 64)
        self.stage2d = RSU6(128, 16, 64)
        self.stage1d = RSU7(128, 16, 64)

        self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
        self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
        self.side3 = nn.Conv2d(64, out_ch, 3, padding=1)
        self.side4 = nn.Conv2d(64, out_ch, 3, padding=1)
        self.side5 = nn.Conv2d(64, out_ch, 3, padding=1)
        self.side6 = nn.Conv2d(64, out_ch, 3, padding=1)

        self.outconv = nn.Conv2d(6, out_ch, 1)

    def forward(self, x):
        hx = x

        # stage 1
        hx1 = self.stage1(hx)
        hx = self.pool12(hx1)

        # stage 2
        hx2 = self.stage2(hx)
        hx = self.pool23(hx2)

        # stage 3
        hx3 = self.stage3(hx)
        hx = self.pool34(hx3)

        # stage 4
        hx4 = self.stage4(hx)
        hx = self.pool45(hx4)

        # stage 5
        hx5 = self.stage5(hx)
        hx = self.pool56(hx5)

        # stage 6
        hx6 = self.stage6(hx)
        hx6up = _upsample_like(hx6, hx5)

        # decoder
        hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
        hx5dup = _upsample_like(hx5d, hx4)

        hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
        hx4dup = _upsample_like(hx4d, hx3)

        hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
        hx3dup = _upsample_like(hx3d, hx2)

        hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
        hx2dup = _upsample_like(hx2d, hx1)

        hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))

        # side output
        d1 = self.side1(hx1d)

        d2 = self.side2(hx2d)
        d2 = _upsample_like(d2, d1)

        d3 = self.side3(hx3d)
        d3 = _upsample_like(d3, d1)

        d4 = self.side4(hx4d)
        d4 = _upsample_like(d4, d1)

        d5 = self.side5(hx5d)
        d5 = _upsample_like(d5, d1)

        d6 = self.side6(hx6)
        d6 = _upsample_like(d6, d1)

        d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))

        return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)


if __name__ == '__main__':
    u2net = U2NET()
    x = torch.randn(1, 3, 224, 224)
    y = u2net(x)
    print(y[0].shape, y[1].shape, y[2].shape, y[3].shape, y[4].shape, y[5].shape, y[6].shape)

数据集建立、包含了随机剪贴的数据增强。文件名u2net_train_eye

import torch.random
from torch.utils.data import Dataset
import os
import cv2
from PIL import Image
import numpy as np
from torchvision.utils import save_image
from torchvision import transforms


class Eye_Dataset(Dataset):
    def __init__(self, root, isTrain=True, transfrom=None):
        super(Eye_Dataset, self).__init__()
        self.isTrain = isTrain
        self.transfrom = transfrom
        if isTrain:
            self.path = root + "/training"
        else:
            self.path = root + "/test"
        self.img_name = os.listdir(self.path + "/images")

    def __len__(self):
        return len(self.img_name)

    def __getitem__(self, index):
        img_name = self.img_name[index]
        img_path = self.path + "/images/" + img_name
        img_data = cv2.imread(img_path)
        img_data = cv2.cvtColor(img_data, cv2.COLOR_BGR2RGB)
        img = Image.fromarray(img_data)
        if self.isTrain:
            file_name = img_name[0:2]
            label_name = file_name + "_manual1.gif"
            label_path = self.path + "/1st_manual/" + label_name
            label = Image.open(label_path)
            label_data = np.array(label)
            ret, label_data = cv2.threshold(label_data, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
            label = Image.fromarray(label_data)
            # 使图像和标签随机剪裁区域对应
            seed = torch.random.seed()
            torch.random.manual_seed(seed)
            img = self.transfrom(img)
            torch.random.manual_seed(seed)
            label = self.transfrom(label)
            return img, label
        else:
            return self.transfrom(img)


if __name__ == '__main__':
    transfrom = transforms.Compose([
        transforms.Resize((320, 320)),
        transforms.RandomCrop(288),
        transforms.ToTensor()
    ])
    eyeDataset = Eye_Dataset(root=r"eye", isTrain=True, transfrom=transfrom)
    i = 1
    for (a, b) in eyeDataset:
        save_image(a, "img/img/img{0}.jpg".format(i), nrow=1)
        save_image(b, "img/label/label{0}.jpg".format(i), nrow=1)
        i += 1

训练文件,文件名u2net_train_eye

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.optim as optim
from torchvision.utils import save_image

from u2net import U2NET
from eye_dataset import Eye_Dataset
from torch.utils.tensorboard import SummaryWriter
import os
from torchvision import transforms

bce_loss = nn.BCELoss(reduction='mean')


def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):
    print(d0.shape)
    print(labels_v.shape)
    loss0 = bce_loss(d0, labels_v)
    loss1 = bce_loss(d1, labels_v)
    loss2 = bce_loss(d2, labels_v)
    loss3 = bce_loss(d3, labels_v)
    loss4 = bce_loss(d4, labels_v)
    loss5 = bce_loss(d5, labels_v)
    loss6 = bce_loss(d6, labels_v)
    loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6
    return loss0, loss


def main():
    transfrom = transforms.Compose([
        transforms.Resize((320, 320)),
        transforms.RandomCrop(288),
        transforms.ToTensor()
    ])
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    module = r"saved_models/u2net/net{0}.pth"
    summerWriter = SummaryWriter("logs")
    eyeDataset = Eye_Dataset(root=r"eye", isTrain=True, transfrom=transfrom)
    salobj_dataloader = DataLoader(eyeDataset, batch_size=1, shuffle=True, num_workers=1)
    net = U2NET()
    net.to(DEVICE)
    # 断点续练
    if os.path.exists(module.format(1102)):
        net.load_state_dict(torch.load(module.format(1102)))
        print("加载成功")
    else:
        print("no params")
    optimizer = optim.Adam(net.parameters())

    epoch = 1021
    d0 = []

    img_ = 0
    # 训练eye数据:3小时
    while True:
        net.train()

        total_loss = 0.0
        for i, (img, label) in enumerate(salobj_dataloader):
            img = img.to(DEVICE)
            label = label.to(DEVICE)

            d0, d1, d2, d3, d4, d5, d6 = net(img)
            loss2, loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, label)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            total_loss += loss.item()

        avg_loss = total_loss / len(salobj_dataloader)
        print("loss:", avg_loss, "epoch:", epoch)
        summerWriter.add_scalar("loss", avg_loss, epoch)
        torch.save(net.state_dict(), module.format(epoch))

        # cuda,解绑
        j = d0[0]
        save_image(j.cpu(), f"train_img_u2/{epoch}.jpg", nrow=1)

        epoch += 1


if __name__ == "__main__":
    main()

工程和数据集都在这,数据集记得是开源的DRIVE眼球数据集
因为是太久以前的项目,印象不深了,需要的可以自取
链接:https://pan.baidu.com/s/13zGWfx6tFN3IBkSy4QARaw?pwd=pscq
提取码:pscq
链接:https://pan.baidu.com/s/1n4x-9AGW-axzxtSZepWPyA?pwd=vzzr
提取码:vzzr

;