Bootstrap

每天学点python-python语言进阶

以下内容学习自:https://github.com/jackfrued/Python-100-Days

重要知识点

  • 生成式(推导式)的用法
  • 生成式(推导式)可以用来生成列表、集合和字典。
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 19 18:39:37 2020

@author: fengzi
"""
prices = {
        "AAPL":191.88,
        "GOOG":1186.96,
        "IBM":149.24,
        "ORCL":48.44,
        "ACN":166.89,
        "FB":208.09,
        "SYMC":21.29
        }
# 用股票价格大于100元的股票构造一个新的字典
prices2 = {key: value for key, value in prices.items() if value > 100}
print(prices2)

嵌套的列表的坑

names = ["关羽", "张飞", "赵云", "马超", "黄忠"]
courses = ["语文", "数学", "英语"]
# 录入五个学生三门课程的成绩
# 错误 - 参考http://pythontutor.com/visualize.html#mode=edit
 #scores = [[None] * len(courses)] * len(names)
scores = [[None] * len(courses) for _ in range(len(names))]
for row, name in enumerate(names):
    for col, course in enumerate(courses):
        scores[row][col] = float(input(f"请输入{name}的{course}成绩:"))
        print(scores)

heapq模块(堆排序)

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 20 10:37:10 2020

@author: fengzi
从列表中找出最大的或最小的N个元素
堆结构(大根堆/小根堆)
"""
import heapq

list1 = [34, 25, 12, 99, 87, 63, 58, 78, 88, 92]
list2 = [
     {"name": "IBM", "shares" : 100, "price": 91.1},
     {"name": "AAPL", "shares": 50, "price": 543.22},
     {"name": "FB", "shares": 200, "price": 21.09},
     {"name":"HPQ", "shares": 35, "price": 31.75},
     {"name":"YHOO", "shares": 45, "price":16.35 },
     {"name":"ACME", "shares": 75, "price":115.65 }
]
print(heapq.nlargest(3, list1))
print(heapq.nsmallest(3, list1))
print(heapq.nlargest(2, list2, key = lambda x: x["price"]))
print(heapq.nlargest(2,list2, key = lambda x: x["shares"]))

itertools模块

"""
迭代工具模块
"""
import itertools

# 产生ABCD的全排列
itertools.permutations('ABCD')
# 产生ABCDE的五选三组合
itertools.combinations('ABCDE', 3)
# 产生ABCD和123的笛卡尔积
itertools.product('ABCD', '123')
# 产生ABC的无限循环序列
itertools.cycle(('A', 'B', 'C'))

collections模块

常用的工具类:

  • namedtuple:命令元组,它是一个类工厂,接受类型的名称和属性列表来创建一个类。
  • deque:双端队列,是列表的替代实现。Python中的列表底层是基于数组来实现的,而deque底层是双向链表,因此当你需要在头尾添加和删除元素是,deque会表现出更好的性能,渐近时间复杂度为 O ( 1 ) O(1) O(1)
  • Counter:dict的子类,键是元素,值是元素的计数,它的most_common()方法可以帮助我们获取出现频率最高的元素。Counter和dict的继承关系我认为是值得商榷的,按照CARP原则,Counter跟dict的关系应该设计为关联关系更为合理。
  • OrderedDict:dict的子类,它记录了键值对插入的顺序,看起来既有字典的行为,也有链表的行为。
  • defaultdict:类似于字典类型,但是可以通过默认的工厂函数来获得键对应的默认值,相比字典中的setdefault()方法,这种做法更加高效。
"""
找出序列中出现次数最多的元素
"""
from collections import Counter

words = [
    'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
    'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around',
    'the', 'eyes', "don't", 'look', 'around', 'the', 'eyes',
    'look', 'into', 'my', 'eyes', "you're", 'under'
]
counter = Counter(words)
print(counter.most_common(3))

在这里插入图片描述

;