《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
基本功能演示
基于YOLO11/v10/v8/v5深度学习的水面垃圾智能检测识别系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
摘要:水体污染是全球面临的一大环境问题,其中漂浮在水面上的垃圾不仅影响水质,还对水生生物构成威胁,并破坏自然景观。本文基于
YOLOv11/v10/v8/v5的深度学习框架
,通过4945
张实际场景中水面垃圾
的相关图片,训练了可进行水面垃圾
目标检测的模型,可以检测4个类别:['玻璃垃圾', '金属垃圾', '塑料垃圾', '其他垃圾']
,同时全面对比分析了YOLOv5n、YOLOv8n、YOLOv10n、YOLO11这4种模型在验证集上的评估性能表现
。最终基于训练好的模型制作了一款带UI界面的水面垃圾智能检测识别系统
,更便于进行功能的展示。该系统是基于python
与PyQT5
开发的,支持图片
、视频
以及摄像头
进行目标检测
,并保存检测结果
。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
文章目录
研究背景
水体污染是全球面临的一大环境问题,其中漂浮在水面上的垃圾不仅影响水质,还对水生生物构成威胁,并破坏自然景观。基于YOLO深度学习框架开发的水面垃圾智能检测识别系统,能够有效识别四类常见垃圾:玻璃垃圾、金属垃圾、塑料垃圾以及其他垃圾。
该系统通过自动化的手段提高了垃圾清理的效率和准确性,有助于快速响应污染事件,及时清除水面污染物,对于保护水资源、维持生态平衡具有重要意义。
其主要应用场景有:
城市河流与湖泊管理
:市政管理部门可以使用该系统监测城市内河流、湖泊等水域中的垃圾情况,安排清洁队伍有针对性地进行打捞作业,保持城市水体的清洁。
海洋环境保护
:海洋研究机构和环保组织能够借助这套系统来跟踪海洋表面的垃圾分布,特别是对于难以到达的海域,可以利用无人机配合系统进行远距离监控。
港口与码头运营
:港口当局可以安装固定摄像头或移动设备来实时监测周围水域的清洁状况,确保航运安全的同时也维护了良好的环境形象。
旅游景点维护
:对于依赖于美丽自然风光吸引游客的地区,如海滨度假村、国家公园内的湖泊等,该系统有助于保持景区的美观度,提升游客体验。
科学研究
:环境科学家可以使用该系统来收集关于不同类型垃圾随水流运动的数据,深入研究垃圾来源及其对生态系统的影响。
总的来说,水面垃圾智能检测识别系统通过引入先进的计算机视觉技术,为解决水面污染问题提供了一个创新而高效的解决方案。
它不仅能够提高垃圾清理工作的精准度,还能够在多个层面上促进水资源的保护和可持续利用。随着人们对环境保护意识的不断增强和技术的持续进步,这种智能化的环境监测工具将在未来的生态保护工作中发挥越来越关键的作用,为创造更加洁净美丽的地球贡献力量。
主要工作内容
本文的主要内容包括以下几个方面:
搜集与整理数据集:
搜集整理实际场景中水面垃圾
的相关数据图片,并进行相应的数据处理,为模型训练提供训练数据集;训练模型:
基于整理的数据集,根据最前沿的YOLOv11/v10/v8/v5目标检测技术
训练目标检测模型,实现对需要检测的对象进行有效检测的功能;模型性能对比:对训练出的4种模型在验证集上进行了充分的结果评估和对比分析
,主要目的是为了揭示每个模型在关键指标(如Precision、Recall、mAP50和mAP50-95等指标)上的优劣势
。这不仅帮助我们在实际应用中选择最适合特定需求的模型,还能够指导后续模型优化和调优工作,以期获得更高的检测准确率和速度。最终,通过这种系统化的对比和分析,我们能更好地理解模型的鲁棒性、泛化能力以及在不同类别上的检测表现,为开发更高效的计算机视觉系统提供坚实的基础。
可视化系统制作:
基于训练出的目标检测模型
,搭配Pyqt5
制作的UI界面,用python
开发了一款界面简洁的软件系统,可支持图片、视频以及摄像头检测
,同时可以将图片或者视频检测结果进行保存
。其目的是为检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。
软件初始界面如下图所示:
检测结果界面如下:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可用于实际场景中的水面垃圾
检测,只有4个检测类别:['玻璃垃圾', '金属垃圾', '塑料垃圾', '其他垃圾']
;
2. 支持图片、视频及摄像头
进行检测,同时支持图片的批量检测
;
3. 界面可实时显示目标位置
、目标总数
、置信度
、用时
等信息;
4. 支持图片
或者视频
的检测结果保存
;
5. 支持将图片的检测结果保存为csv文件
;
界面参数设置说明
置信度阈值:也就是目标检测时的conf参数,只有检测出的目标框置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,对检测框重叠比例iou大于该阈值的目标框进行过滤【也就是说假如两检测框iou大于该值的话,会过滤掉其中一个,该值越小,重叠框会越少】;
检测结果说明
显示标签名称与置信度:
表示是否在检测图片上标签名称与置信度,显示默认勾选,如果不勾选则不会在检测图片上显示标签名称与置信度;
总目标数
:表示画面中检测出的目标数目;
目标选择
:可选择单个目标进行位置信息、置信度查看。
目标位置
:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;
主要功能说明
功能视频演示见文章开头,以下是简要的操作描述。
(1)图片检测说明
点击打开图片
按钮,选择需要检测的图片,或者点击打开文件夹
按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存
按钮,会对检测结果进行保存,存储路径为:save_data
目录下,同时会将图片检测信息保存csv文件
。
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。
(2)视频检测说明
点击视频
按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
(3)摄像头检测说明
点击打开摄像头
按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。
(4)保存图片与视频检测说明
点击保存
按钮后,会将当前选择的图片【含批量图片】或者视频
的检测结果进行保存,对于图片图片检测还会保存检测结果为csv文件
,方便进行查看与后续使用。检测的图片与视频结果会存储在save_data
目录下。
【注:暂不支持视频文件的检测结果保存为csv文件格式。】
保存的检测结果文件如下:
图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置
。
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。
二、YOLOv5/v8/v10/11介绍
关于YOLOv5/v8/v10/v11模型的详细介绍可以参考之前分享的博客文章《YOLOv5/v8/v10/v11详细介绍:网络结构,创新点》
,地址:
https://a-xu-ai.blog.csdn.net/article/details/143272589
二、模型训练、评估与推理
本文主要基于YOLOv5n、YOLOv8n、YOLOv10n
、YOLO11n
这4种模型进行模型的训练,训练完成后对4种模型在验证集上的表现进行全面的性能评估及对比分析。模型训练和评估流程基本一致,包括:数据集准备、模型训练、模型评估。
下面主要以最新的YOLO11为例进行训练过程的详细讲解,YOLOv5、YOLOv8与YOLOv10的训练过程类似。
1. 数据集准备与训练
通过网络上搜集关于实际场景中水面垃圾
的相关图片,并使用Labelimg标注工具对每张图片进行标注,分4个检测类别
:['玻璃垃圾', '金属垃圾', '塑料垃圾', '其他垃圾']
。
数据增强:
通过随机左右上下翻转、亮度调节、饱和度调节
等方式进行图片数据增强,以扩充数据集。
最终数据集一共包含4945张图片
,其中训练集包含4359张图片
,验证集包含381张图片
,测试集包含205张图片
。
部分图像及标注如下图所示:
数据集各类别数目分布情况如下:
2.模型训练
准备好数据集后,将图片数据以如下格式放置在项目目录中。在项目目录中新建datasets
目录,同时将检测的图片分为训练集与验证集放入Data
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv11在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
train: D:\2MyCVProgram\2DetectProgram\WaterWasteDetection_v11\datasets\Data\train
val: D:\2MyCVProgram\2DetectProgram\WaterWasteDetection_v11\datasets\Data\valid
test: D:\2MyCVProgram\2DetectProgram\WaterWasteDetection_v11\datasets\Data\test
nc: 4
names: ['Glass', 'Metal', 'Plastic', 'Trash']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,optimizer
设定的优化器为SGD
,训练代码如下:
#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')
# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/11/yolo11.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolo11n.pt'
if __name__ == '__main__':
#加载预训练模型
model = YOLO(model_yaml_path).load(pre_model_name)
#训练模型
results = model.train(data=data_yaml_path,
epochs=150, # 训练轮数
batch=4, # batch大小
name='train_v11', # 保存结果的文件夹名称
optimizer='SGD') # 优化器
模型常用训练超参数参数说明:
YOLO11 模型的训练设置包括训练过程中使用的各种超参数和配置
。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器、损失函数和训练数据集组成的选择也会影响训练过程。对这些设置进行仔细的调整和实验对于优化性能至关重要。
以下是一些常用的模型训练参数和说明:
参数名 | 默认值 | 说明 |
---|---|---|
model | None | 指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。 |
data | None | 数据集配置文件的路径(例如 coco8.yaml ).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。 |
epochs | 100 | 训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。 |
patience | 100 | 在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。 |
batch | 16 | 批量大小,有三种模式:设置为整数(例如,’ Batch =16 ‘), 60% GPU内存利用率的自动模式(’ Batch =-1 ‘),或指定利用率分数的自动模式(’ Batch =0.70 ')。 |
imgsz | 640 | 用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。 |
device | None | 指定用于训练的计算设备:单个 GPU (device=0 )、多个 GPU (device=0,1 )、CPU (device=cpu ),或苹果芯片的 MPS (device=mps ). |
workers | 8 | 加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。 |
name | None | 训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。 |
pretrained | True | 决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。 |
optimizer | 'auto' | 为训练模型选择优化器。选项包括 SGD , Adam , AdamW , NAdam , RAdam , RMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性 |
lr0 | 0.01 | 初始学习率(即 SGD=1E-2 , Adam=1E-3 ) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。 |
lrf | 0.01 | 最终学习率占初始学习率的百分比 = (lr0 * lrf ),与调度程序结合使用,随着时间的推移调整学习率。 |
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv11在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。[email protected]:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的[email protected]
值为0.52
,结果还是可以的。
模型在验证集上的评估结果如下:
4. 使用模型进行推理
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/train/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/0028_jpg.rf.078bde2bd98d920145651ded44e0d966.jpg"
# 加载预训练模型
model = YOLO(path, task='detect')
# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
更多检测结果示例如下:
三、YOLOv5/v8/v10/11性能对比分析
本文在介绍的数据集上分别训练了YOLOv5n、YOLOv8n、YOLOv10n、YOLO11n
这4种模型用于对比分析,训练轮数为150个epoch
。主要分析这4种模型的训练结果在Precision(精确度)
、Recall(召回率)
、mAP50
、mAP50-95
、F1-score
等性能指标上的表现,以选出更适合本数据集的最优模型。
4种模型基本信息如下:
Model | size (pixels) | mAPval 50-95 | params (M) | FLOPs (B) |
---|---|---|---|---|
YOLOv5n | 640 | 34.3 | 2.6 | 7.7 |
YOLOv8n | 640 | 37.3 | 3.2 | 8.7 |
YOLOv10n | 640 | 38.5 | 2.7 | 6.7 |
YOLOv11n | 640 | 39.5 | 2.6 | 6.5 |
FlOPs(floating point operations):浮点运算次数,用于衡量算法/模型的复杂度。
params (M):表示模型的参数量
这3种模型都是各个YOLO系列种最小尺寸结构的模型,在模型参数与计算量上都相差不大,属于同一个级别的模型,因此能够进行横向的对比分析。
1.常用评估参数介绍
-
Precision(精确度):
-
精确度是针对预测结果的准确性进行衡量的一个指标,它定义为预测为正例(即预测为目标存在)中真正正例的比例。
-
公式:
-
其中,TP(True Positives)是正确预测为正例的数量,FP(False Positives)是错误预测为正例的数量。
-
-
Recall(召回率):
-
召回率衡量的是模型检测到所有实际正例的能力,即预测为正例的样本占所有实际正例的比例。
-
公式:
-
其中,FN(False Negatives)是错误预测为负例(即漏检)的数量。
-
-
mAP50(平均精度,Mean Average Precision at Intersection over Union 0.5):
- mAP50是目标检测中一个非常重要的指标,它衡量的是模型在IoU(交并比)阈值为0.5时的平均精度。IoU是一个衡量预测边界框与真实边界框重叠程度的指标。
- mAP50通常在多个类别上计算,然后取平均值,得到整体的平均精度。
- 计算方法:对于每个类别,首先计算在IoU阈值为0.5时的精度-召回率曲线(Precision-Recall Curve),然后计算曲线下的面积(AUC),最后对所有类别的AUC取平均值。
这三个指标共同提供了对目标检测模型性能的全面评估:
- 精确度(Box_P)关注预测的准确性,即减少误检(FP)。
- 召回率(Box_R)关注检测的完整性,即减少漏检(FN)。
- mAP50提供了一个平衡精确度和召回率的指标,同时考虑了模型在不同类别上的表现。
在实际应用中,根据具体需求,可能会更侧重于精确度或召回率,例如在需要减少误报的场合,可能会更重视精确度;而在需要确保所有目标都被检测到的场合,可能会更重视召回率。mAP50作为一个综合指标,能够帮助研究者和开发者平衡这两个方面,选择最合适的模型。
- mAP50-95:
- 这是衡量目标检测模型在不同IoU阈值下性能的指标。IoU是预测的边界框与真实边界框之间的重叠程度,mAP50-95计算了从IoU为0.5到0.95的范围内,模型的平均精度。
- 精度-召回率曲线在不同的IoU阈值上绘制,然后计算曲线下的面积(AUC),最后取这些AUC的平均值,得到mAP50-95。
- 这个指标反映了模型在不同匹配严格度下的性能,对于评估模型在实际应用中的泛化能力非常重要。
- F1分数:
-
这是精确度和召回率的调和平均数,能够平衡两者的影响,是一个综合考虑精确度和召回率的指标。
-
公式:
-
当精确度和召回率差距较大时,F1分数能够提供一个更全面的模型性能评估。
-
2. 模型训练过程对比
YOLOv5n、YOLOv8n、YOLOv10n、YOLO11n
这4种模型的训练过程损失曲线与性能曲线如下。
训练过程的损失曲线对比如下:
训练过程中的精确度(Precision)、召回率(Recall)、平均精确度(Mean Average Precision, mAP)等参数的对比如下:
直观的从曲线上看,4种模型在模型精度上看,差别不是很大。下面对具体的性能数值进行详细分析。
3.各模型性能评估
在YOLOv5n、YOLOv8n、YOLOv10n、YOLO11n
这3种模型训练完成后,我们可以通过验证集对各个模型分别进行性能评估。
YOLOv5n模型在验证集上的性能评估结果如下:
表格列说明:
Class:表示模型的检测类别名称;
Images:表示验证集图片数目;
Instances:表示在所有图片中目标数;
P:表示精确度Precison;
R:表示召回率Recall;
mAP50:表示IoU(交并比)阈值为0.5时的平均精度。
mAP50-95:表示从IoU为0.5到0.95的范围内【间隔0.05】,模型的平均精度。
表格行说明:
第一行all,除Instances是
所有类别目标数之和
,其他参数表示所有类别对应列参数的平均值
;
其他行,表示每一个类别对应参数的值。
YOLOv8n模型在验证集上的性能评估结果如下:
YOLOv10n模型在验证集上的性能评估结果如下:
YOLO11模型在验证集上的性能评估结果如下:
4.模型总体性能对比
下面我们从总体的平均指标上对YOLOv5n、YOLOv8n、YOLOv10n、YOLO11n
这4种模型进行对比分析。
下表是YOLOv5n、YOLOv8n、YOLOv10n、YOLO11n
这4不同模型目标检测结果的整体性能平均指标对比情况:
Model | Precision | Recall | mAP50 | mAP50-95 | F1-score |
---|---|---|---|---|---|
YOLOv5n | 57.10 | 51.10 | 52.80 | 33.40 | 53.90 |
YOLOv8n | 66.50 | 47.70 | 50.20 | 32.40 | 55.60 |
YOLOv10n | 64.10 | 45.40 | 50.00 | 31.60 | 53.20 |
YOLO11n | 66.30 | 43.90 | 52.00 | 33.50 | 52.80 |
为了方便更加直观的查看与对比各个结果,同样我们将表格绘制成图表的形式进行分析。
从上述对比数据中,我们可以看出:
- Precision(精确度):YOLOv8n的精确度最高,为66.50%,而YOLOv5n的精确度最低,为57.10%。这表明YOLOv8n在识别目标时更准确,误报率较低。
- Recall(召回率):YOLOv5n的召回率最高,为51.10%,而YOLOv11n的召回率最低,为43.90%。这意味着YOLOv5n在检测目标时更全面,漏检率较低。
- mAP50(在IoU=0.5时的平均精度):YOLOv5n的mAP50最高,为52.80%,而YOLOv10n的mAP50最低,为50.0%。这表明YOLOv5n在检测目标时,即使只考虑IoU=0.5的情况,也能保持较高的准确度。
- mAP50-95(在IoU从0.5到0.95的平均精度):YOLOv11n的mAP50-95最高,为33.50%,而YOLOv10n的mAP50-95最低,为31.60%。这表明YOLOv11n在更严格的IoU条件下也能保持较高的检测性能。
- F1-score(F1分数):所有模型的F1分数都在50%以上,其中YOLOv8n的F1分数最高,为55.60%。F1分数是精确度和召回率的调和平均,因此这些模型在整体性能上表现良好。
结论:
YOLOv5n在多项评估指标上都表现出色,特别是在Recall、mAP50和mAP50-95上,显示出其在此项目标检测任务中的优势,但是在精确度上还有待进一步的提升,相较于其他模型差距较大。
而YOLOv8n在各项指标中表现比较均衡,没有明显的短板,也是个不错的选择。
四、可视化系统制作
基于上述训练出的目标检测模型,为了给此检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。博主基于Pyqt5开发了一个可视化的系统界面,通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。【系统详细展示见第一部分内容】
Pyqt5详细介绍
关于Pyqt5的详细介绍可以参考之前的博客文章:《Python中的Pyqt5详细介绍:基本机构、部件、布局管理、信号与槽、跨平台》
,地址:
https://a-xu-ai.blog.csdn.net/article/details/143273797
系统制作
博主基于Pyqt5框架开发了此款水面垃圾智能检测识别系统
,即文中第一部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
。
通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。这不仅提升了系统的可用性和用户体验,还使得检测过程更加直观透明,便于结果的实时观察和分析。此外,GUI还可以集成其他功能,如检测结果的保存与导出、检测参数的调整,从而为用户提供一个全面、综合的检测工作环境,促进智能检测技术的广泛应用。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、训练好的模型、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
【获取方式】
本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
注意:该代码基于Python3.9开发,运行界面的主程序为
MainProgram.py
,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt
配置软件运行所需环境。