Bootstrap

绘制YOLOv11模型在训练过程中,精准率,召回率,mAP_0.5,mAP_0.5:0.95,以及各种损失的变化曲线

一、本文介绍

本文用于绘制模型在训练过程中,精准率,召回率,mAP_0.5,mAP_0.5:0.95,以及各种损失的变化曲线。用以比较不同算法的收敛速度,最终精度等,并且能够在论文中直观的展示改进效果。支持多文件的数据比较。

在这里插入图片描述

在这里插入图片描述


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;