赛题背景
在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是一种三元复合物由目标蛋白配体、linker、E3连接酶配体组成,靶向降解目标蛋白质。本次大赛聚焦于运用先进的人工智能算法预测其降解效能,旨在激发参赛者创新思维,推动AI技术与化学生物学的深度融合,进一步提升药物研发效率与成功率,为人类健康事业贡献智慧力量。通过此次大赛,我们期待见证并孵化出更多精准、高效的分子性质预测模型,共同开启药物发现的新纪元。
赛事任务与数据
选手根据提供的demo数据集,可以基于demo数据集进行数据增强、自行搜集数据等方式扩充数据集,并自行划分数据。运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,若DC50>100nM且Dmax<80% ,则视为降解能力较差(demo数据集中Label=0);若DC50<=100nM或Dmax>=80%,则视为降解能力好(demo数据集中Label=1)。
大白话解释:
【训练分子性质分类预测模型】运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,分类为 降解能力较差/降解能力好 两种结论
评价指标
本次竞赛的评价标准采用f1_score,分数越高,效果越好
解题思路
参赛选手的任务是基于训练集的样本数据,构建一个模型来预测测试集中分子的性质情况。这是一个二分类任务,其中目标是根据分析相关信息以及结构信息等特征,预测该分子的性质标签。具体来说,选手需要利用给定的数据集进行特征工程、模型选择和训练,然后使用训练好的模型对测试集中的用户进行预测,并生成相应的预测结果。
导入必要的库
import numpy as np
import pandas as pd
import joblib
from catboost import CatBoostClassifier
from sklearn.model_selection import StratifiedKFold, KFold, GroupKFold
from sklearn.metrics import f1_score
from rdkit import Chem
from rdkit.Chem import Descriptors,rdMolDescriptors,GraphDescriptors,Lipinski
from rdkit.Chem.rdMolDescriptors import CalcMolFormula, CalcTPSA
from rdkit.Chem.Crippen import MolLogP
from sklearn.feature_extraction.text import TfidfVectorizer
from openfe import OpenFE, tree_to_formula, transform, TwoStageFeatureSelector
from gensim.models import Word2Vec
import tqdm, sys, os, gc, re, argparse, warnings
warnings.filterwarnings('ignore')
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
读取数据,删去非空值小于10的列
train = pd.read_excel('./dataset-new/traindata-new.xlsx')
test = pd.read_excel('./dataset-new/testdata-new.xlsx')
# test数据不包含 DC50 (nM) 和 Dmax (%)
train = train.drop(['DC50 (nM)', 'Dmax (%)'], axis=1)
# 定义了一个空列表drop_cols,用于存储在测试数据集中非空值小于10个的列名。
drop_cols = []
for f in test.columns:
if test[f].notnull().sum() < 10:
drop_cols.append(f)
# 使用drop方法从训练集和测试集中删除了这些列,以避免在后续的分析或建模中使用这些包含大量缺失值的列
train = train.drop(drop_cols, axis=1)
test = test.drop(drop_cols, axis=1)
特征工程
# 使用pd.concat将清洗后的训练集和测试集合并成一个名为data的DataFrame,便于进行统一的特征工程处理
data = pd.concat([train, test], axis=0, ignore_index=True)
cols = data.columns[2:]
特征关联性分析
train_label = train.copy()
# 自然数编码()
def label_encode(series):
unique = list(series.unique())
return series.map(dict(zip(
unique, range(series.nunique())
)))
object_cols = train_label.select_dtypes(include=['object']).columns
for col in object_cols:
train_label[col] = label_encode(train_label[col])
features = train_label.columns[1:]
corr = []
for feat in features:
corr.append(abs(train_label[[feat, "Label"]].fillna(0).corr().values[0][1]))
se = pd.Series(corr, index=features).sort_values(ascending=False)
se
data = data.drop(se[-6:].index, axis=1)
提取Smiles特征
DeepChem是一个用于科研的机器学习库。DeepChem最初专注于化学分子的研究,但随着版本更迭,现在其已能更广泛地支持所有类型的科学应用。我觉得这个模块做的比较好的几点在于:
- 能够方便地将化学分子用统一长度的向量或矩阵表示,便于机器学习数据读入;
- 提供方便使用的机器学习接口,你可以不必专门学习机器学习模块(如Tensorflow 、Pytorch等);
- 封装化程度高,上手容易。但对于需要个性化参数调整的需求就不是很方便了,这个时候就需要查阅源码,在理解的基础上进行调整。
import deepchem as dc
dc_smiles = data['Smiles']
rdkit_featurizer = dc.feat.RDKitDescriptors()
rdkit_feature = rdkit_featurizer.featurize(dc_smiles)
dc_feature = pd.DataFrame(rdkit_feature)
dc_feature.columns = [f'smiles_dc_{i}' for i in range(dc_feature.shape[1])]
zeros_count = dc_feature.eq(0).sum()
columns_to_drop = zeros_count[zeros_count >= 704].index.tolist()
smiles_feature = dc_feature.drop(columns=columns_to_drop)
提取InChI特征
atomic_masses = {
'H': 1.008, 'He': 4.002602, 'Li': 6.94, 'Be': 9.0122, 'B': 10.81, 'C': 12.01,
'N': 14.01, 'O': 16.00, 'F': 19.00, 'Ne': 20.180, 'Na': 22.990, 'Mg': 24.305,
'Al': 26.982, 'Si': 28.085, 'P': 30.97, 'S': 32.07, 'Cl': 35.45, 'Ar': 39.95,
'K': 39.10, 'Ca': 40.08, 'Sc': 44.956, 'Ti': 47.867, 'V': 50.942, 'Cr': 52.00,
'Mn': 54.938, 'Fe': 55.845, 'Co': 58.933, 'Ni': 58.69, 'Cu': 63.55, 'Zn': 65.38
}
# 函数用于解析单个InChI字符串
def parse_inchi(row):
inchi_str = row['InChI']
formula = ''
molecular_weight = 0
element_counts = {}
# 提取分子式
formula_match = re.search(r"InChI=1S/([^/]+)/c", inchi_str)
if formula_match:
formula = formula_match.group(1)
# 计算分子量和原子计数
for element, count in re.findall(r"([A-Z][a-z]*)([0-9]*)", formula):
count = int(count) if count else 1
element_mass = atomic_masses.get(element.upper(), 0)
molecular_weight += element_mass * count
element_counts[element.upper()] = count
return pd.Series({
'ElementCounts': element_counts
})
# 应用函数到DataFrame的每一行
data[['ElementCounts']] = data.apply(parse_inchi, axis=1)
# 定义存在的key
keys = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn']
# 创建一个空的DataFrame,列名为keys
df_expanded = pd.DataFrame({key: pd.Series() for key in keys})
# 遍历数据,填充DataFrame
for index, item in enumerate(data['ElementCounts'].values):
for key in keys:
# 将字典中的值填充到相应的列中
df_expanded.at[index, key] = item.get(key, 0)
df_expanded = pd.DataFrame(df_expanded)
zeros_count = df_expanded.eq(0).sum()
columns_to_drop = zeros_count[zeros_count >= 704].index.tolist()
inchi_keys = df_expanded.drop(columns=columns_to_drop)
from rdkit import Chem
from rdkit.Chem import Descriptors, rdMolDescriptors, GraphDescriptors, Lipinski
def calculate_descriptors(inchi):
# 解析InChI字符串,提取分子信息
mol = Chem.MolFromInchi(inchi)
# 氢键供体
h_donors = Descriptors.NumHDonors(mol)
# 氢键受体
h_acceptors = Descriptors.NumHAcceptors(mol)
# 旋转键个数
rotatable_bonds = Descriptors.NumRotatableBonds(mol)
# 芳香环数
aromatic_ring_count = Descriptors.NumAromaticRings(mol)
# 总极性表面积 (TPSA)
tpsa = rdMolDescriptors.CalcTPSA(mol)
# XLogP
xlogp = Descriptors.MolLogP(mol)
# 价电子数
num_valence_electrons = Descriptors.NumValenceElectrons(mol)
# 平均信息含量
avg_ipc = GraphDescriptors.AvgIpc(mol)
# Balaban's J
balaban_j = GraphDescriptors.BalabanJ(mol)
# BertzCT 复杂度
bertz_ct = GraphDescriptors.BertzCT(mol)
# 重原子分子量
heavy_atom_mol_wt = Descriptors.HeavyAtomMolWt(mol)
# 最大绝对部分电荷
max_abs_partial_charge = Descriptors.MaxAbsPartialCharge(mol)
# 最大部分电荷
max_partial_charge = Descriptors.MaxPartialCharge(mol)
# 最小绝对部分电荷
min_abs_partial_charge = Descriptors.MinAbsPartialCharge(mol)
# 最小部分电荷
min_partial_charge = Descriptors.MinPartialCharge(mol)
# 分子的Kappa1
kappa1 = rdMolDescriptors.CalcKappa1(mol)
# 分子的Kappa2
kappa2 = rdMolDescriptors.CalcKappa2(mol)
# 分子的Kappa3
kappa3 = rdMolDescriptors.CalcKappa3(mol)
# 分子的Labute ASA
labute_asa = rdMolDescriptors.CalcLabuteASA(mol)
# 分子的Morgan指纹
morgan_fingerprint = rdMolDescriptors.GetMorganFingerprint(mol, 2)
# 分子的自旋轨道耦合常数
kappa = rdMolDescriptors.CalcPhi(mol)
# 分子的饱和碳环数
num_saturated_carbocycles = rdMolDescriptors.CalcNumSaturatedCarbocycles(mol)
# 分子的饱和杂环数
num_saturated_heterocycles = rdMolDescriptors.CalcNumSaturatedHeterocycles(mol)
# 分子的饱和环数
num_saturated_rings = rdMolDescriptors.CalcNumSaturatedRings(mol)
# 分子的螺原子数
num_spiro_atoms = rdMolDescriptors.CalcNumSpiroAtoms(mol)
# 分子的氧化数
rdMolDescriptors.CalcOxidationNumbers(mol)
# 分子的CSP3分数
fraction_csp3 = Lipinski.FractionCSP3(mol)
# 分子的NHOH计数
nhoh_count = Lipinski.NHOHCount(mol)
# 分子的NO计数
no_count = Lipinski.NOCount(mol)
# 分子的异原子数
num_heteroatoms = Lipinski.NumHeteroatoms(mol)
# 分子的非芳香碳环数
num_aliphatic_carbocycles = Lipinski.NumAliphaticCarbocycles(mol)
# 分子的非芳香杂环数
num_aliphatic_heterocycles = Lipinski.NumAliphaticHeterocycles(mol)
# 分子的非芳香环数
num_aliphatic_rings = Lipinski.NumAliphaticRings(mol)
# 分子的芳烃碳环数
num_aromatic_carbocycles = Lipinski.NumAromaticCarbocycles(mol)
# 分子的芳烃杂环数
num_aromatic_heterocycles = Lipinski.NumAromaticHeterocycles(mol)
# 分子的摩尔折射率
mol_refractivity = Descriptors.MolMR(mol)
return {
"H-Bond Donors": h_donors,
"H-Bond Acceptors": h_acceptors,
"Rotatable Bonds": rotatable_bonds,
"Aromatic Ring Count": aromatic_ring_count,
"TPSA": tpsa,
"XLogP": xlogp,
"Num Valence Electrons": num_valence_electrons,
"Average Information Content": avg_ipc,
"Balaban's J": balaban_j,
"BertzCT Complexity": bertz_ct,
"Heavy Atom Molecular Weight": heavy_atom_mol_wt,
"Max Absolute Partial Charge": max_abs_partial_charge,
"Max Partial Charge": max_partial_charge,
"Min Absolute Partial Charge": min_abs_partial_charge,
"Min Partial Charge": min_partial_charge,
"Kappa1": kappa1,
"Kappa2": kappa2,
"Kappa3": kappa3,
"Labute Accessible Surface Area": labute_asa,
"Spin-Orbit Coupling Constant": kappa,
"Saturated Carbocycles": num_saturated_carbocycles,
"Saturated Heterocycles": num_saturated_heterocycles,
"Saturated Rings": num_saturated_rings,
"Spiro Atoms": num_spiro_atoms,
"CSP3 Fraction": fraction_csp3,
"NHOH Count": nhoh_count,
"NO Count": no_count,
"Heteroatoms": num_heteroatoms,
"Aliphatic Carbocycles": num_aliphatic_carbocycles,
"Aliphatic Heterocycles": num_aliphatic_heterocycles,
"Aliphatic Rings": num_aliphatic_rings,
"Aromatic Carbocycles": num_aromatic_carbocycles,
"Aromatic Heterocycles": num_aromatic_heterocycles,
"Molar Refractivity": mol_refractivity,
}
# 创建一个空的列表以存储提取的特征
features_list = []
# 提取特征并添加到列表中
for inchi in data['InChI']:
features = calculate_descriptors(inchi)
features_list.append(features)
# 将列表转换为DataFrame
inchi_features = pd.DataFrame(features_list)
# 将提取的特征添加到原始数据集
data = pd.concat([data, smiles_feature, inchi_keys, inchi_features], axis=1)
data[:4]
根据关联性分析筛选特征
data = data.drop(['ElementCounts'], axis=1)
# 自然数编码()
def label_encode(series):
unique = list(series.unique())
return series.map(dict(zip(
unique, range(series.nunique())
)))
object_cols = data.select_dtypes(include=['object']).columns
for col in object_cols:
data[col] = label_encode(data[col])
train = data[data.Label.notnull()].reset_index(drop=True)
test = data[data.Label.isnull()].reset_index(drop=True)
features1 = train.columns[1:]
corr1 = []
for feat in features1:
corr1.append(abs(train[[feat, "Label"]].fillna(0).corr().values[0][1]))
se1 = pd.Series(corr1, index=features1).sort_values(ascending=False)
drop_se1 = se1.index[-4:]
# 使用drop方法从训练集和测试集中删除了这些列,以避免在后续的分析或建模中使用这些包含大量缺失值的列
train = train.drop(drop_se1, axis=1)
test = test.drop(drop_se1, axis=1)
train[:3]
# 特征筛选
features = [f for f in train.columns if f not in ['uuid','Label']]
# 构建训练集和测试集
x_train = train[features]
x_test = test[features]
# 训练集标签
y_train = train['Label'].astype(int)
x_train.info()
train.rename(columns=lambda x: re.sub(r'[^\w\s]', '_', x), inplace=True)
test.rename(columns=lambda x: re.sub(r'[^\w\s]', '_', x), inplace=True)
OpenFE特征构造
OpenFE,全称Open Feature Engineering,是一个开源的Python库,专门设计用于简化和自动化特征工程的过程。通过提供一系列的工具和函数,OpenFE使数据科学家和机器学习工程师能够更高效地创建、测试和部署特征。
- 自动特征生成:OpenFE能够根据现有数据自动创建新的特征,帮助提升模型的性能。
- 特征选择与优化:它提供了多种特征选择方法,帮助用户识别和保留最有价值的特征,同时去除冗余或无关的特征。
- 易于使用的API:OpenFE设计了简洁直观的API,即使是没有太多编程经验的人也能轻松上手。
- 灵活性和可扩展性:用户可以根据自己的需要自定义特征转换规则,使得OpenFE能够适用于各种不同的数据和项目需求。
ofe = OpenFE()
features = ofe.fit(data=x_train, label=y_train, n_jobs=6)joblib.dump(ofe,"ofe.pkl")for feature in ofe.new_features_list:
print(tree_to_formula(feature))x_train, x_test = transform(x_train, x_test, features, n_jobs=6)cat_columns = x_train.select_dtypes(include=['category']).columns
x_train[cat_columns] = x_train[cat_columns].astype(np.int32)
cat_columns = x_test.select_dtypes(include=['category']).columns
x_test[cat_columns] = x_test[cat_columns].astype(np.int32)
模型训练
这里借鉴了《机器学习算法竞赛实战》的代码
lgm
模型特征选择
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.model_selection import KFold
from hyperopt import hp, fmin, tpe
from numpy.random import RandomState
from sklearn.metrics import mean_squared_error,f1_score
def feature_select_wrapper(train, test):
"""
:param train:
:param test:
:return:
"""
print('feature_select_wrapper...')
label = 'Label'
features = train.columns.tolist()
features.remove('uuid')
features.remove('Label')
# 配置模型的训练参数
params_initial = {
'num_leaves': 31,
'learning_rate': 0.1,
'boosting': 'gbdt',
'min_child_samples': 20,
'bagging_seed': 2020,
'bagging_fraction': 0.7,
'bagging_freq': 1,
'feature_fraction': 0.7,
'max_depth': -1,
'metric': 'auc',
'reg_alpha': 0,
'reg_lambda': 1,
'objective': 'binary'
}
ESR = 30
NBR = 10000
VBE = 50
kf = KFold(n_splits=5, random_state=2020, shuffle=True)
fse = pd.Series(0, index=features)
callbacks = [lgb.early_stopping(stopping_rounds=30, verbose=50)]
for train_part_index, eval_index in kf.split(train[features], train[label]):
# 模型训练
train_part = lgb.Dataset(train[features].loc[train_part_index],
train[label].loc[train_part_index])
eval1 = lgb.Dataset(train[features].loc[eval_index],
train[label].loc[eval_index])
bst = lgb.train(params_initial, train_part, num_boost_round=10000,
valid_sets=[train_part, eval1],
valid_names=['train', 'valid'],
callbacks=callbacks
)
fse += pd.Series(bst.feature_importance(), features)
feature_select = ['uuid'] + fse.sort_values(ascending=False).index.tolist()[:200]
print('done')
return train[feature_select + ['Label']], test[feature_select]
参数寻优
def params_append(params):
"""
:param params:
:return:
"""
params['objective'] = 'binary'
params['metric'] = 'auc'
params['bagging_seed'] = 2020
return params
def param_hyperopt(train):
"""
:param train:
:return:
"""
label = 'Label'
features = train.columns.tolist()
features.remove('uuid')
features.remove('Label')
params1 = {'feature_pre_filter':False}
train_data = lgb.Dataset(train[features], train[label], params = params1)
callbacks1 = [lgb.early_stopping(stopping_rounds=20, verbose=False),lgb.log_evaluation(show_stdv=False)]
def hyperopt_objective(params):
"""
:param params:
:return:
"""
params = params_append(params)
print(params)
res = lgb.cv(params, train_data, 1000,
nfold=2,
stratified=False,
shuffle=True,
metrics='auc',
seed=2020,
callbacks=callbacks1)
return min(res['valid auc-mean'])
params_space = {
'learning_rate': hp.uniform('learning_rate', 1e-2, 5e-1),
'bagging_fraction': hp.uniform('bagging_fraction', 0.5, 1),
'feature_fraction': hp.uniform('feature_fraction', 0.5, 1),
'num_leaves': hp.choice('num_leaves', list(range(10, 300, 10))),
'reg_alpha': hp.randint('reg_alpha', 0, 10),
'reg_lambda': hp.uniform('reg_lambda', 0, 10),
'bagging_freq': hp.randint('bagging_freq', 1, 10),
'min_child_samples': hp.choice('min_child_samples', list(range(1, 30, 5)))
}
params_best = fmin(
hyperopt_objective,
space=params_space,
algo=tpe.suggest,
max_evals=100,
rstate=np.random.default_rng(2020))
return params_best
模型预测
def train_predict(train, test, params):
"""
:param train:
:param test:
:param params:
:return:
"""
label = 'Label'
features = train.columns.tolist()
features.remove('uuid')
features.remove('Label')
params = params_append(params)
kf = KFold(n_splits=5, random_state=2020, shuffle=True)
prediction_test = 0
cv_score = []
prediction_train = pd.Series()
ESR = 30
NBR = 10000
VBE = 50
callbacks = [lgb.early_stopping(stopping_rounds=30, verbose=50)]
for train_part_index, eval_index in kf.split(train[features], train[label]):
# 模型训练
train_part = lgb.Dataset(train[features].loc[train_part_index],
train[label].loc[train_part_index])
eval = lgb.Dataset(train[features].loc[eval_index],
train[label].loc[eval_index])
bst = lgb.train(params, train_part, num_boost_round=NBR,
valid_sets=[train_part, eval],
valid_names=['train', 'valid'],
callbacks=callbacks)
prediction_test += bst.predict(test[features])
prediction_train = prediction_train._append(pd.Series(bst.predict(train[features].loc[eval_index]),
index=eval_index))
eval_pre = bst.predict(train[features].loc[eval_index]).astype(int)
score = np.sqrt(f1_score(train[label].loc[eval_index].values, eval_pre))
cv_score.append(score)
print(cv_score, sum(cv_score) / 5)
pd.Series(prediction_train.sort_index().values).to_csv("train_lightgbm.csv", index=False)
pd.Series(prediction_test / 5).to_csv("test_lightgbm.csv", index=False)
test['Label'] = prediction_test / 5
test[['uuid', 'Label']].to_csv("submit_lightgbm.csv", index=False)
return
train_select, test_select = feature_select_wrapper(train, test)
best_clf = param_hyperopt(train_select)
joblib.dump(best_clf,"best_clf.pkl")
best_clf = joblib.load('best_clf.pkl')
train_predict(train_select, test_select, best_clf)
xgb
import numpy as np
import pandas as pd
import lightgbm as lgb
import xgboost as xgb
from sklearn.model_selection import KFold
from hyperopt import hp, fmin, tpe
from scipy import sparse
from scipy.sparse import csr_matrix
from sklearn.feature_selection import f_regression,f_classif
from numpy.random import RandomState
from sklearn.metrics import mean_squared_error,f1_score
from bayes_opt import BayesianOptimization
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error,f1_score
def read_data1(debug=True):
features = train.columns.tolist()
features.remove('uuid')
features.remove('Label')
train_x = csr_matrix(train[features].astype(pd.SparseDtype("float64",0)).sparse.to_coo()).tocsr()
test_x = csr_matrix(test[features].astype(pd.SparseDtype("float64",0)).sparse.to_coo()).tocsr()
print("done")
return train_x, test_x
def params_append1(params):
"""
:param params:
:return:
"""
params['objective'] = 'binary:hinge'
params['eval_metric'] = 'auc'
params["min_child_weight"] = int(params["min_child_weight"])
params['max_depth'] = int(params['max_depth'])
return params
def param_beyesian1(train):
"""
:param train:
:return:
"""
train_y = pd.read_excel("dataset-new/traindata-new.xlsx")['Label'].values
train_data = xgb.DMatrix(train, train_y, silent=True)
def xgb_cv(colsample_bytree, subsample, min_child_weight, max_depth,
reg_alpha, eta,
reg_lambda):
"""
:param colsample_bytree:
:param subsample:
:param min_child_weight:
:param max_depth:
:param reg_alpha:
:param eta:
:param reg_lambda:
:return:
"""
params = {'objective': 'binary:hinge',
'early_stopping_round': 100,
'eval_metric': 'auc'}
params['colsample_bytree'] = max(min(colsample_bytree, 1), 0)
params['subsample'] = max(min(subsample, 1), 0)
params["min_child_weight"] = int(min_child_weight)
params['max_depth'] = int(max_depth)
params['eta'] = float(eta)
params['reg_alpha'] = max(reg_alpha, 0)
params['reg_lambda'] = max(reg_lambda, 0)
print(params)
cv_result = xgb.cv(params, train_data,
num_boost_round=10000,
nfold=5, seed=2,
stratified=False,
shuffle=True,
early_stopping_rounds=30,
verbose_eval=False)
return -min(cv_result['test-auc-mean'])
xgb_bo = BayesianOptimization(
xgb_cv,
{'colsample_bytree': (0.5, 1),
'subsample': (0.5, 1),
'min_child_weight': (1, 30),
'max_depth': (5, 12),
'reg_alpha': (0, 5),
'eta':(0.02, 1),
'reg_lambda': (0, 5)}
)
xgb_bo.maximize(init_points=21, n_iter=10) # init_points表示初始点,n_iter代表迭代次数(即采样数)
print(xgb_bo.max['target'], xgb_bo.max['params'])
return xgb_bo.max['params']
def train_predict1(train, test, params):
"""
:param train:
:param test:
:param params:
:return:
"""
train_y = pd.read_excel("dataset-new/traindata-new.xlsx")['Label']
test_data = xgb.DMatrix(test)
params = params_append1(params)
kf = KFold(n_splits=5, random_state=2020, shuffle=True)
prediction_test = 0
cv_score = []
prediction_train = pd.Series()
ESR = 30
NBR = 10000
VBE = 50
for train_part_index, eval_index in kf.split(train, train_y):
# 模型训练
train_part = xgb.DMatrix(train.tocsr()[train_part_index, :],
train_y.loc[train_part_index])
eval2 = xgb.DMatrix(train.tocsr()[eval_index, :],
train_y.loc[eval_index])
bst = xgb.train(params, train_part, NBR, [(train_part, 'train'),
(eval2, 'eval')], verbose_eval=VBE,
maximize=False, early_stopping_rounds=ESR, )
prediction_test += bst.predict(test_data)
eval_pre = bst.predict(eval2)
prediction_train = prediction_train._append(pd.Series(eval_pre, index=eval_index))
score = np.sqrt(f1_score(train_y.loc[eval_index].values, eval_pre))
cv_score.append(score)
print(cv_score, sum(cv_score) / 5)
pd.Series(prediction_train.sort_index().values).to_csv("train_xgboost.csv", index=False)
pd.Series(prediction_test / 5).to_csv("test_xgboost.csv", index=False)
test = pd.read_excel('dataset-new/testdata-new.xlsx')
test['Label'] = prediction_test / 5
test[['uuid', 'Label']].to_csv("submission_xgboost.csv", index=False)
return
train1, test1 = read_data1(debug=False)
best_clf1 = param_beyesian1(train1)
train_predict1(train1, test1, best_clf1)
cat
def cv_model(clf, train_x, train_y, test_x, clf_name, seed=2024):
kf = KFold(n_splits=5, shuffle=True, random_state=seed)
train = np.zeros(train_x.shape[0])
test = np.zeros(test_x.shape[0])
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
print('************************************ {} {}************************************'.format(str(i+1), str(seed)))
trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
params = {'learning_rate': 0.1, 'depth': 6, 'l2_leaf_reg': 10, 'bootstrap_type':'Bernoulli','random_seed':seed,
'od_type': 'Iter', 'od_wait': 100, 'random_seed': 11, 'allow_writing_files': False, 'task_type':'CPU'}
model = clf(iterations=20000, **params, eval_metric='auc')
model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
metric_period=100,
cat_features=[],
use_best_model=True,
verbose=1)
val_pred = model.predict_proba(val_x)[:,1]
test_pred = model.predict_proba(test_x)[:,1]
train[valid_index] = val_pred
test += test_pred / kf.n_splits
cv_scores.append(f1_score(val_y, np.where(val_pred>0.5, 1, 0)))
print(cv_scores)
print("%s_score_list:" % clf_name, cv_scores)
print("%s_score_mean:" % clf_name, np.mean(cv_scores))
print("%s_score_std:" % clf_name, np.std(cv_scores))
return train, test
cat_train, cat_test = cv_model(CatBoostClassifier, x_train, y_train, x_test, "cat")
pd.DataFrame(
{
'uuid': test['uuid'],
'Label': np.where(cat_test>0.5, 1, 0)
}
).to_csv('submit_v4.csv', index=None)
未完待续……