Bootstrap

稀疏重构算法详解

引入

  在室内环境中, 多径信号具有天然的空间稀疏性, 根据压缩感知理论可知, 如果信号是可压缩的或者在某个变换域是稀疏的, 可以采用一个随机测量矩阵将高维信号映射到一个低维空间上, 通过求解优化问题, 以很高的概率重构出原始信号。
  因此,在该理论框架下, 可以通过特定的空间网格划分构造完备的稀疏表达基, 对接收阵列信号进行稀疏化表示, 再利用优化方法得到稀疏空间谱, 这样可以将多径信号的 AOA 估计问题转换为空间谱的稀䟽重构问题。

稀疏重构算法

  基于稀疏重构实现信号的 A O A \mathrm{AOA} AOA 估计, 首先要构造完备的稀疏表达基, 使得接收阵列信号能够稀疏化表示。对于阵列接收信号模型, 其转向矩阵 A \mathbf{A} A 中每一个转向向量 a ( θ l ) , l = 1 , 2 , … , L \mathbf{a}\left(\theta_{l}\right), l=1,2, \ldots, L a(θl),l=1,2,,L, 对应着空间中一个入射信号。为了接收阵列信号能够稀疏化表示, 将阵列流型矩阵扩展到整个空间。常采用等角度采样的方式划分空间网格,即 { θ ~ 1 , θ ~ 2 , … , θ ~ N θ } \left\{\tilde{\theta}_{1}, \tilde{\theta}_{2}, \ldots, \tilde{\theta}_{N_{\theta}}\right\} {θ~1,θ~2,,θ~Nθ}, 其中 N θ N_{\theta} Nθ 为划分空间 网格的个数。此时, 构成新的阵列流型矩阵 A ~ \tilde{\mathbf{A}} A~ 可以表示为阵列信号的完备稀疏表达基, 即
A ~ = [ a ( θ ~ 1 ) , a ( θ ~ 2 ) , … , a ( θ ~ N θ ) ] \widetilde{\mathbf{A}}=\left[\mathbf{a}\left(\tilde{\theta}_{1}\right), \mathbf{a}\left(\tilde{\theta}_{2}\right), \ldots, \mathbf{a}\left(\tilde{\theta}_{N_{\theta}}\right)\right] A =[a(θ~1),a(θ~2),,a(θ~Nθ)]
  在室内环境中, 多径信号的个数会远远小于划分空间网格信号的个数, 即 L ≪ N θ L \ll N_{\theta} LNθ, 假设每一个等角度采样的空间网格都对应一个信号 s n , n = 1 , 2 , … , N θ s_{n}, n=1,2, \ldots, N_{\theta} sn,n=1,2,,Nθ, 接收阵列信号可以稀疏化表示为
h = A ~ s ~ + n \mathbf{h}=\widetilde{A} \widetilde{\boldsymbol{s}}+\mathbf{n} h=A s +n
  式中, s ~ = [ s 1 , s 2 , … , s N θ ] ⊤ \tilde{\mathbf{s}}=\left[s_{1}, s_{2}, \ldots, s_{N_{\theta}}\right]^{\top} s~=[s1,s2,,sNθ] 为稀疏空间谱信号, n \mathbf{n} n 为信号橾声。
  实际上, 稀疏信号 s ~ \widetilde{\mathbf{s}} s 含 有 L L L 个非零元素, 其所对应转向向量的角度值就是多径人射信号的 AOA 估计, 而其它元素都为零, 如图所示。此时, 空间谱信号 s ~ \widetilde{\mathbf{s}} s 具有很强的稀疏性, 利用稀疏重构算法可以重构出稀疏的空间谱信号 s ~ \widetilde{\mathbf{s}} s , 将信号的 A O A \mathrm{AOA} AOA 估计问题就转化为稀疏信号的重构问题。根据稀疏空间谱 s ~ \widetilde{\mathbf{s}} s { θ ~ 1 , θ ~ 2 , … , θ ~ N } \left\{\tilde{\theta}_{1}, \tilde{\theta}_{2}, \ldots, \tilde{\theta}_{N}\right\} {θ~1,θ~2,,θ~N} 的对应关系确定多径信号的 AOA 估计。
在这里插入图片描述

  压缩感知理论指出, 如果阵列流型矩阵 A ~ \tilde{\mathbf{A}} A~ 满足约束等距性 (Restricted Isometry Property, RIP), 实现 L L L 项稀疏空间谱 s ~ \widetilde{\boldsymbol{s}} s 的精确重构, 可以通过一个组合优化问题求解, 即 ℓ 0 \ell_{0} 0 范数优化问题
min ⁡ ∥ s ~ ∥ 0  s.  t . h = A ~ s ~ \begin{aligned} &\min \|\tilde{\mathbf{s}}\|_{0} \\ &\text { s. } t . \quad \mathbf{h}=\widetilde{\mathbf{A}} \widetilde{\mathbf{s}} \end{aligned} mins~0 s. t.h=A s
  式中, ∥ s ~ ∥ 0 \|\tilde{\mathbf{s}}\|_{0} s~0 为稀疏空间谱的 ℓ 0 \ell_{0} 0 范数, 表示稀疏信号 s ~ \tilde{\mathbf{s}} s~ 中非零元素的个数。由统计理论和 组合优化方法可知, 通过选择合适的测量方式和重构算法, 仅需 L + 1 L+1 L+1 次测量就可将 N θ N_{\theta} Nθ 维空间的 L L L-稀疏信号精确重构, 但是求解上式的非零元素是一个 NP 难问题。当测量矩阵满足 RIP 条件时, 通过 ℓ 1 \ell_{1} 1 范数优化问题代替 ℓ 0 \ell_{0} 0 范数的组合优化问题, 利用线性规划 算法即可求解,
min ⁡ ∥ s ~ ∥ 1  s.  t . h = A ~ s ~ \min \|\tilde{\mathbf{s}}\|_{1}\\ \text { s. } t . \quad \mathbf{h}=\tilde{\mathbf{A}} \tilde{\mathbf{s}} mins~1 s. t.h=A~s~

  其核心思想是将非零元素个数近似等于所有非零元素绝对值的和,然后通过正则化求解凸优化问题,
min ⁡ ∥ h − A ~ s ~ ∥ 2 2 + κ ∥ s ~ ∥ 1 \min \|\mathbf{h}-\widetilde{\mathbf{A}} \widetilde{\boldsymbol{s}}\|_{2}^{2}+\kappa\|\widetilde{\mathbf{s}}\|_{1} minhA s 22+κs 1
  式中, κ \kappa κ 是正则化系数。利用二阶锥规划(??) (Second-Order Cone Programming, SOCP) 的方法 可以重构出稀疏空间谱信号 s ~ \widetilde{\mathbf{s}} s , 其中的非零元素所对应的等角度空间网格的 角度值就是多径信号的 A O A \mathrm{AOA} AOA 估计。

参考文献

[1]张凌雁. 基于WiFi信道状态信息的室内定位跟踪技术研究[D]. 大连理工大学.

;