Bootstrap

SparkStreaming

pom依赖

<dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <!--2.12是scala的版本,3.0.0是spark的版本-->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-yarn_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.27</version>
        </dependency>
        <dependency>
            <groupId>com.atguigu</groupId>
            <artifactId>summer-framework</artifactId>
            <version>1.0-SNAPSHOT</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>3.1.2</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.27</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-core</artifactId>
            <version>2.10.1</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/com.alibaba/druid -->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
            <version>1.1.10</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <!-- 该插件用于将Scala代码编译成class文件 -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <!-- 声明绑定到maven的compile阶段 -->
                        <goals>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

消费kafka的数据

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}

object ReceiveKafaData {

    def main(args: Array[String]): Unit = {

        // TODO 消费Kafka中指定Topic数据
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingWordCount")
        val ssc = new StreamingContext(sparkConf, Seconds(3))
        // TODO Kafka一般就是用于实时数据传输,所以在SparkStreaming的操作过程中,
        //      可以使用工具类
        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu0317",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )

        // 通过工具类访问Kafka,传递Topic和连接配置即可
        val kafkaDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguigu0317"), kafkaPara)
        )
        // 因为kafka传递数据是基于KV键值对的数据,所以这里(String, String)其实就是kv键值对
        // 因为一般传递数据时,key不传的,所以key为null,获取数据时,一般只需要value即可
        kafkaDStream.map(_.value()).print()

        ssc.start()
        ssc.awaitTermination()
    }
}

需求一:广告黑名单
1.1

import java.sql.{DriverManager, ResultSet}
import java.text.SimpleDateFormat

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}

import scala.collection.mutable.ListBuffer

object Req1_BlackList {

    def main(args: Array[String]): Unit = {

        // TODO 需求:将每天对某个广告点击超过 100 次的用户拉黑
        // TODO 消费Kafka中指定Topic数据
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingBlackList")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        // TODO Kafka一般就是用于实时数据传输,所以在SparkStreaming的操作过程中,
        //      可以使用工具类

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu0317",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )
        val kafkaDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguigu0317"), kafkaPara)
        )
        // TODO 1. 读取Kafka中广告点击的数据
        //         将数据转换类来使用
        val clickDStream: DStream[AdClickData] = kafkaDStream.map(
            record => {
                val data = record.value()
                val datas = data.split(" ")
                AdClickData( datas(0), datas(1), datas(2), datas(3), datas(4) )
            }
        )

        // TODO 2. 周期性读取用户黑名单数据,将黑名单数据中的用户的数据过滤掉
        //         对正常广告点击的数据进行统计
        val aggregateDStream = clickDStream.transform(
            rdd => {
                // TODO 读取Mysql数据,获取黑名单信息
                val driverClass = "com.mysql.jdbc.Driver"
                val url = "jdbc:mysql://linux1:3306/spark0317"
                val user = "root"
                val password = "123123"
                Class.forName(driverClass)
                val conn = DriverManager.getConnection(url, user, password)
                val pstat = conn.prepareStatement(
                    """
                      | select userid from black_list
                    """.stripMargin
                )

                val rs : ResultSet = pstat.executeQuery()
                val blackids = ListBuffer[String]()

                while ( rs.next() ) {
                    blackids.append(rs.getString(1))
                }
                rs.close()
                pstat.close
                conn.close()

                // TODO 对采集的数据进行过滤,将黑名单中的数据过滤掉
                val filterRDD = rdd.filter(
                    data => {
                        !blackids.contains(data.userid)
                    }
                )

                // TODO 对过滤后的数据进行统计
                // (word, count) => ( day-userid-adid, count) => ( day-userid-adid, sum)
                val sdf = new SimpleDateFormat("yyyy-MM-dd")
                filterRDD.map(
                    data => {
                        // TODO 因为统计是基于日期进行,所以需要将数据格式转换为以天为单位
                        // TS => Date
                        val date = new java.util.Date(data.ts.toLong)
                        ( ( sdf.format(date), data.userid, data.adid ), 1 )
                    }
                ).reduceByKey(_+_)
            }
        )

        // TODO 3. 将统计结果和用户的历史数据进行合并
        //         对结果进行判断,如果结果超过指定的阈值,将这个用户拉入黑名单
        aggregateDStream.foreachRDD(
            rdd => {
                rdd.foreach {
                    case ((day, userid, adid), sum) => {

                        println(s"处理的数据为 : ( ${day} ${userid} ${adid} ${sum} )")

                        val driverClass = "com.mysql.jdbc.Driver"
                        val url = "jdbc:mysql://linux1:3306/spark0317"
                        val user = "root"
                        val password = "123123"
                        Class.forName(driverClass)
                        val conn = DriverManager.getConnection(url, user, password)
                        // TODO 获取用户当天广告的点击数量
                        val pstat = conn.prepareStatement(
                            """
                              |select
                              |    count
                              |from user_ad_count
                              |where dt = ? and userid = ? and adid = ?
                            """.stripMargin)
                        pstat.setString(1, day)
                        pstat.setString(2, userid)
                        pstat.setString(3, adid)

                        val rs: ResultSet = pstat.executeQuery()
                        if (rs.next()) {
                            // 用户信息存在
                            val count = rs.getLong(1)
                            // TODO 对当前用户的点击数量进行更新
                            val newCount = count + sum
                            // TODO 如果更新后的数据值超过的阈值
                            if ( newCount >= 30 ) {
                                // TODO 将用户拉入到黑名单中
                                val pstat1 = conn.prepareStatement(
                                    """
                                      |insert into black_list (userid) values (?)
                                    """.stripMargin)
                                pstat1.setString(1, userid)
                                pstat1.executeUpdate()
                                pstat1.close()
                            } else {
                                // TODO 更新数据
                                val pstat2 = conn.prepareStatement(
                                    """
                                      |update user_ad_count
                                      |set count = ?
                                      |where dt = ? and userid = ? and adid = ?
                                    """.stripMargin)
                                pstat2.setLong(1, newCount)
                                pstat2.setString(2, day)
                                pstat2.setString(3, userid)
                                pstat2.setString(4, adid)
                                pstat2.executeUpdate()
                                pstat2.close()
                            }
                        } else {
                            // 用户信息不存在
                            // TODO 如果聚合后的数据值超过的阈值
                            if ( sum >= 30 ) {
                                // TODO 将用户拉入到黑名单中
                                //     如果有重复的数据,需要更新
                                val pstat1 = conn.prepareStatement(
                                    """
                                      |insert into black_list (userid) values (?)
                                      |on duplicate key
                                      |update userid = ?
                                    """.stripMargin)
                                pstat1.setString(1, userid)
                                pstat1.setString(2, userid)
                                pstat1.executeUpdate()
                                pstat1.close()
                            } else {
                                // TODO 将当前的用户信息插入到表中
                                val pstat2 = conn.prepareStatement(
                                    """
                                      |insert into user_ad_count (dt, userid, adid, count) values (?, ?, ?, ?)
                                    """.stripMargin)
                                pstat2.setString(1, day)
                                pstat2.setString(2, userid)
                                pstat2.setString(3, adid)
                                pstat2.setLong(4, sum)
                                pstat2.executeUpdate()
                                pstat2.close()
                            }
                        }

                        rs.close()
                        conn.close()
                    }
                }

            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
    case class AdClickData( ts : String, area:String, city:String, userid:String, adid:String )
}

需求一:广告黑名单
1.2

import java.sql.{DriverManager, ResultSet}
import java.text.SimpleDateFormat

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

object Req1_BlackList2 {

    def main(args: Array[String]): Unit = {

        // TODO 需求:将每天对某个广告点击超过 100 次的用户拉黑
        // TODO 消费Kafka中指定Topic数据
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingBlackList")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        // TODO Kafka一般就是用于实时数据传输,所以在SparkStreaming的操作过程中,
        //      可以使用工具类

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu0317",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )
        val kafkaDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguigu0317"), kafkaPara)
        )
        // TODO 1. 读取Kafka中广告点击的数据
        //         将数据转换类来使用
        val clickDStream: DStream[AdClickData] = kafkaDStream.map(
            record => {
                val data = record.value()
                val datas = data.split(" ")
                AdClickData( datas(0), datas(1), datas(2), datas(3), datas(4) )
            }
        )

        // TODO 2. 周期性读取用户黑名单数据,将黑名单数据中的用户的数据过滤掉
        //         对正常广告点击的数据进行统计
        val aggregateDStream = clickDStream.transform(
            rdd => {
                // TODO 读取Mysql数据,获取黑名单信息
                val driverClass = "com.mysql.jdbc.Driver"
                val url = "jdbc:mysql://linux1:3306/spark0317"
                val user = "root"
                val password = "123123"
                Class.forName(driverClass)
                val conn = DriverManager.getConnection(url, user, password)
                val pstat = conn.prepareStatement(
                    """
                      | select userid from black_list
                    """.stripMargin
                )

                val rs : ResultSet = pstat.executeQuery()
                val blackids = ListBuffer[String]()

                while ( rs.next() ) {
                    blackids.append(rs.getString(1))
                }
                rs.close()
                pstat.close
                conn.close()

                // TODO 对采集的数据进行过滤,将黑名单中的数据过滤掉
                val filterRDD = rdd.filter(
                    data => {
                        !blackids.contains(data.userid)
                    }
                )

                // TODO 对过滤后的数据进行统计
                // (word, count) => ( day-userid-adid, count) => ( day-userid-adid, sum)
                val sdf = new SimpleDateFormat("yyyy-MM-dd")
                filterRDD.map(
                    data => {
                        // TODO 因为统计是基于日期进行,所以需要将数据格式转换为以天为单位
                        // TS => Date
                        val date = new java.util.Date(data.ts.toLong)
                        ( ( sdf.format(date), data.userid, data.adid ), 1 )
                    }
                ).reduceByKey(_+_)
            }
        )

        // TODO 3. 将统计结果和用户的历史数据进行合并
        //         对结果进行判断,如果结果超过指定的阈值,将这个用户拉入黑名单
        aggregateDStream.foreachRDD(
            rdd => {
                rdd.foreach {
                    case ((day, userid, adid), sum) => {

                        println(s"处理的数据为 : ( ${day} ${userid} ${adid} ${sum} )")

                        val driverClass = "com.mysql.jdbc.Driver"
                        val url = "jdbc:mysql://linux1:3306/spark0317"
                        val user = "root"
                        val password = "123123"
                        Class.forName(driverClass)
                        val conn = DriverManager.getConnection(url, user, password)

                        // TODO 更新(插入)用户点击统计表
                        val pstat = conn.prepareStatement(
                            """
                              | insert into user_ad_count( dt, userid, adid, count )
                              | values (?, ?, ?, ?)
                              | on duplicate key
                              | update count = count + ?
                            """.stripMargin)

                        // TODO 判断是否超过阈值,加入黑名单
                        val pstat1 = conn.prepareStatement(
                            """
                              | select
                              |     userid
                              | from user_ad_count
                              | where dt = ? and userid = ? and adid = ? and count >= 30
                            """.stripMargin)


                        val pstat2 = conn.prepareStatement(
                            """
                              | insert into black_list(userid)
                              | values (?)
                              | on duplicate key
                              | update userid = ?
                            """.stripMargin)

                        // TODO 更新统计数据
                        pstat.setString(1, day)
                        pstat.setString(2, userid)
                        pstat.setString(3, adid)
                        pstat.setLong(4, sum)
                        pstat.setLong(5, sum)
                        pstat.executeUpdate()

                        // TODO  查询超过阈值的数据
                        pstat1.setString(1, day)
                        pstat1.setString(2, userid)
                        pstat1.setString(3, adid)
                        val rs: ResultSet = pstat1.executeQuery()
                        if ( rs.next() ) {
                            // TODO 插入黑名单
                            pstat2.setString(1, userid)
                            pstat2.setString(2, userid)
                            pstat2.executeUpdate()

                        }
                        rs.close()

                        pstat.close()
                        pstat1.close()
                        pstat2.close()

                        conn.close()
                    }
                }

            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
    case class AdClickData( ts : String, area:String, city:String, userid:String, adid:String )
}

需求一:广告黑名单
1.3

import java.sql.{DriverManager, ResultSet}
import java.text.SimpleDateFormat

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

object Req1_BlackList3 {

    def main(args: Array[String]): Unit = {

        // TODO 需求:将每天对某个广告点击超过 100 次的用户拉黑
        // TODO 消费Kafka中指定Topic数据
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingBlackList")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        // TODO Kafka一般就是用于实时数据传输,所以在SparkStreaming的操作过程中,
        //      可以使用工具类

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu0317",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )
        val kafkaDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguigu0317"), kafkaPara)
        )
        // TODO 1. 读取Kafka中广告点击的数据
        //         将数据转换类来使用
        val clickDStream: DStream[AdClickData] = kafkaDStream.map(
            record => {
                val data = record.value()
                val datas = data.split(" ")
                AdClickData( datas(0), datas(1), datas(2), datas(3), datas(4) )
            }
        )

        // TODO 2. 周期性读取用户黑名单数据,将黑名单数据中的用户的数据过滤掉
        //         对正常广告点击的数据进行统计

        // 在数据处理过程中,需要将数据的统计结果和Mysql进行交互
        // 如果频繁的创建数据库连接会导致性能下降,并且可能出现异常
        // 1. 使用连接池优化连接操作
        // 2. 如果数据量非常大,那么一条数据就使用一个连接,依然会导致连接池承受不了。
        val aggregateDStream = clickDStream.transform(
            rdd => {
                // TODO 读取Mysql数据,获取黑名单信息
                val conn = JDBCUtil.getConnection
                val pstat = conn.prepareStatement(
                    """
                      | select userid from black_list
                    """.stripMargin
                )

                val rs : ResultSet = pstat.executeQuery()
                val blackids = ListBuffer[String]()

                while ( rs.next() ) {
                    blackids.append(rs.getString(1))
                }
                rs.close()
                pstat.close
                conn.close()

                // TODO 对采集的数据进行过滤,将黑名单中的数据过滤掉
                val filterRDD = rdd.filter(
                    data => {
                        !blackids.contains(data.userid)
                    }
                )

                // TODO 对过滤后的数据进行统计
                // (word, count) => ( day-userid-adid, count) => ( day-userid-adid, sum)
                val sdf = new SimpleDateFormat("yyyy-MM-dd")
                filterRDD.map(
                    data => {
                        // TODO 因为统计是基于日期进行,所以需要将数据格式转换为以天为单位
                        // TS => Date
                        val date = new java.util.Date(data.ts.toLong)
                        ( ( sdf.format(date), data.userid, data.adid ), 1 )
                    }
                ).reduceByKey(_+_)
            }
        )

        // TODO 3. 将统计结果和用户的历史数据进行合并
        //         对结果进行判断,如果结果超过指定的阈值,将这个用户拉入黑名单
        aggregateDStream.foreachRDD(
            rdd => {
                // TODO Coding


                // foreach : 算子内部如果使用了算子外部的对象,那么这个对象必须能序列化
                //          数据库连接对象无法序列化
                rdd.foreach {
                    case ((day, userid, adid), sum) => {

                        println(s"处理的数据为 : ( ${day} ${userid} ${adid} ${sum} )")

                        val conn = JDBCUtil.getConnection

                        // TODO 更新(插入)用户点击统计表
                        val pstat = conn.prepareStatement(
                            """
                              | insert into user_ad_count( dt, userid, adid, count )
                              | values (?, ?, ?, ?)
                              | on duplicate key
                              | update count = count + ?
                            """.stripMargin)

                        // TODO 判断是否超过阈值,加入黑名单
                        val pstat1 = conn.prepareStatement(
                            """
                              | select
                              |     userid
                              | from user_ad_count
                              | where dt = ? and userid = ? and adid = ? and count >= 30
                            """.stripMargin)


                        val pstat2 = conn.prepareStatement(
                            """
                              | insert into black_list(userid)
                              | values (?)
                              | on duplicate key
                              | update userid = ?
                            """.stripMargin)

                        // TODO 更新统计数据
                        pstat.setString(1, day)
                        pstat.setString(2, userid)
                        pstat.setString(3, adid)
                        pstat.setLong(4, sum)
                        pstat.setLong(5, sum)
                        pstat.executeUpdate()

                        // TODO  查询超过阈值的数据
                        pstat1.setString(1, day)
                        pstat1.setString(2, userid)
                        pstat1.setString(3, adid)
                        val rs: ResultSet = pstat1.executeQuery()
                        if ( rs.next() ) {
                            // TODO 插入黑名单
                            pstat2.setString(1, userid)
                            pstat2.setString(2, userid)
                            pstat2.executeUpdate()

                        }
                        rs.close()

                        pstat.close()
                        pstat1.close()
                        pstat2.close()

                        conn.close()
                    }
                }

            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
    case class AdClickData( ts : String, area:String, city:String, userid:String, adid:String )
}

需求一:广告黑名单
1.4

import java.sql.ResultSet
import java.text.SimpleDateFormat

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

object Req1_BlackList4 {

    def main(args: Array[String]): Unit = {

        // TODO 需求:将每天对某个广告点击超过 100 次的用户拉黑
        // TODO 消费Kafka中指定Topic数据
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingBlackList")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        // TODO Kafka一般就是用于实时数据传输,所以在SparkStreaming的操作过程中,
        //      可以使用工具类

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu0317",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )
        val kafkaDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguigu0317"), kafkaPara)
        )
        // TODO 1. 读取Kafka中广告点击的数据
        //         将数据转换类来使用
        val clickDStream: DStream[AdClickData] = kafkaDStream.map(
            record => {
                val data = record.value()
                val datas = data.split(" ")
                AdClickData( datas(0), datas(1), datas(2), datas(3), datas(4) )
            }
        )

        // TODO 2. 周期性读取用户黑名单数据,将黑名单数据中的用户的数据过滤掉
        //         对正常广告点击的数据进行统计

        // 在数据处理过程中,需要将数据的统计结果和Mysql进行交互
        // 如果频繁的创建数据库连接会导致性能下降,并且可能出现异常
        // 1. 使用连接池优化连接操作
        // 2. 如果数据量非常大,那么一条数据就使用一个连接,依然会导致连接池承受不了。
        //    可以采用一个分区一个连接对象,而不是一个数据一个连接
        val aggregateDStream = clickDStream.transform(
            rdd => {
                // TODO 读取Mysql数据,获取黑名单信息
                val conn = JDBCUtil.getConnection
                val pstat = conn.prepareStatement(
                    """
                      | select userid from black_list
                    """.stripMargin
                )

                val rs : ResultSet = pstat.executeQuery()
                val blackids = ListBuffer[String]()

                while ( rs.next() ) {
                    blackids.append(rs.getString(1))
                }
                rs.close()
                pstat.close
                conn.close()

                // TODO 对采集的数据进行过滤,将黑名单中的数据过滤掉
                val filterRDD = rdd.filter(
                    data => {
                        !blackids.contains(data.userid)
                    }
                )

                // TODO 对过滤后的数据进行统计
                // (word, count) => ( day-userid-adid, count) => ( day-userid-adid, sum)
                val sdf = new SimpleDateFormat("yyyy-MM-dd")
                filterRDD.map(
                    data => {
                        // TODO 因为统计是基于日期进行,所以需要将数据格式转换为以天为单位
                        // TS => Date
                        val date = new java.util.Date(data.ts.toLong)
                        ( ( sdf.format(date), data.userid, data.adid ), 1 )
                    }
                ).reduceByKey(_+_)
            }
        )

        // TODO 3. 将统计结果和用户的历史数据进行合并
        //         对结果进行判断,如果结果超过指定的阈值,将这个用户拉入黑名单
        aggregateDStream.foreachRDD(
            rdd => {
                // TODO Coding


                // foreach : 算子内部如果使用了算子外部的对象,那么这个对象必须能序列化
                //          数据库连接对象无法序列化
                // map & mapPartitions
                // foreach & foreachPartition
                rdd.foreachPartition(
                    datas => {
                        val conn = JDBCUtil.getConnection
                        // TODO 更新(插入)用户点击统计表
                        val pstat = conn.prepareStatement(
                            """
                              | insert into user_ad_count( dt, userid, adid, count )
                              | values (?, ?, ?, ?)
                              | on duplicate key
                              | update count = count + ?
                            """.stripMargin)

                        // TODO 判断是否超过阈值,加入黑名单
                        val pstat1 = conn.prepareStatement(
                            """
                              | select
                              |     userid
                              | from user_ad_count
                              | where dt = ? and userid = ? and adid = ? and count >= 30
                            """.stripMargin)


                        val pstat2 = conn.prepareStatement(
                            """
                              | insert into black_list(userid)
                              | values (?)
                              | on duplicate key
                              | update userid = ?
                            """.stripMargin)

                        // TODO 循环分区数据
                        datas.foreach{
                            case ((day, userid, adid), sum) => {
                                // TODO 更新统计数据
                                pstat.setString(1, day)
                                pstat.setString(2, userid)
                                pstat.setString(3, adid)
                                pstat.setLong(4, sum)
                                pstat.setLong(5, sum)
                                pstat.executeUpdate()

                                // TODO  查询超过阈值的数据
                                pstat1.setString(1, day)
                                pstat1.setString(2, userid)
                                pstat1.setString(3, adid)
                                val rs: ResultSet = pstat1.executeQuery()
                                if ( rs.next() ) {
                                    // TODO 插入黑名单
                                    pstat2.setString(1, userid)
                                    pstat2.setString(2, userid)
                                    pstat2.executeUpdate()

                                }
                            }
                        }

                        pstat.close()
                        pstat1.close()
                        pstat2.close()

                        conn.close()
                    }
                )
            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
    case class AdClickData( ts : String, area:String, city:String, userid:String, adid:String )
}

需求二:广告点击量实时统计

import java.sql.{Connection, ResultSet}
import java.text.SimpleDateFormat

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

object Req2_DateAreaCityAdAnalysis {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingBlackList")
        val ssc = new StreamingContext(sparkConf, Seconds(3))

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu0317",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )
        val kafkaDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguigu0317"), kafkaPara)
        )
        // TODO 1. 读取Kafka中广告点击的数据
        //         将数据转换类来使用
        val clickDStream: DStream[AdClickData] = kafkaDStream.map(
            record => {
                val data = record.value()
                val datas = data.split(" ")
                AdClickData( datas(0), datas(1), datas(2), datas(3), datas(4) )
            }
        )

        val sdf = new SimpleDateFormat("yyyy-MM-dd")
        val mapDStream = clickDStream.map(
            data => {
                val day = sdf.format(new java.util.Date( data.ts.toLong ))
                (( day, data.area, data.city, data.adid ), 1)
            }
        )
        // 有状态操作 -
        val reduceDS = mapDStream.reduceByKey(_+_)

        // TODO 将统计的结果保存到MySQL中
        reduceDS.foreachRDD(
            rdd => {

                // DStream.map : 原语 => 方法
                // rdd.foreach : 算子 => 分布式概念
                // collection.foreach : 方法 => 内存中数据处理(单点)
                rdd.foreachPartition(
                    datas => {
                        val conn: Connection = JDBCUtil.getConnection
                        // 预编译
                        val pstat = conn.prepareStatement(
                            """
                              | insert into area_city_ad_count(dt, area, city, adid, count)
                              | values ( ?, ?, ?, ?, ? )
                              | on duplicate key
                              | update count = count + ?
                            """.stripMargin)

                        datas.foreach{
                            case ((dt, area, city, adid), count) => {
                                pstat.setString(1, dt)
                                pstat.setString(2, area)
                                pstat.setString(3, city)
                                pstat.setString(4, adid)
                                pstat.setLong(5, count)
                                pstat.setLong(6, count)
                                pstat.executeUpdate()
                            }
                        }

                        pstat.close()
                        conn.close()
                    }
                )
            }
        )

        ssc.start()
        ssc.awaitTermination()
    }
    case class AdClickData( ts : String, area:String, city:String, userid:String, adid:String )
}

需求三:最近一小时广告点击量

import java.sql.Connection
import java.text.SimpleDateFormat

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Minutes, Seconds, StreamingContext}

object Req3_LastHourAdClickAnalysis {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingBlackList")
        val ssc = new StreamingContext(sparkConf, Seconds(5))

        val kafkaPara: Map[String, Object] = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092",
            ConsumerConfig.GROUP_ID_CONFIG -> "atguigu0317",
            "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer",
            "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"
        )
        val kafkaDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(
            ssc,
            LocationStrategies.PreferConsistent,
            ConsumerStrategies.Subscribe[String, String](Set("atguigu0317"), kafkaPara)
        )
        // TODO 1. 读取Kafka中广告点击的数据
        //         将数据转换类来使用
        val clickDStream: DStream[AdClickData] = kafkaDStream.map(
            record => {
                val data = record.value()
                val datas = data.split(" ")
                AdClickData( datas(0), datas(1), datas(2), datas(3), datas(4) )
            }
        )

        // TODO 将数据进行结构的转换,便于统计分析
        // 1分钟,每10秒统计结果

        // 12:01 => 12:00
        // 12:09 => 12:00
        // 12:31 => 12:30
        // 12:59 => 12:50

        // ts => long => 1000 => 00
        // ts => long => 9000 => 00
        // ts => long => 31000 => 30
        // ts => long => 59000 => 50
        // long / 10000 * 10000 = 50000

        //((A, 12:01), 1)
        //((A, 12:02), 1)
        //((A, 12:09), 1)
        // ==> ( (A, 12:10), 2 )
        // ==> ( (A, 12:00), 3 )
        // ==> ( (A, 12:20), 1 )
        val mapDS = clickDStream.map(
            data => {
                (( data.adid, data.ts.toLong / 10000 * 10000 ), 1)
            }
        )

        // shuffle : 打乱重新组合
        val reduceDS = mapDS.reduceByKeyAndWindow(
            (x:Int, y:Int) => x + y,
            Minutes(1),
            Seconds(10)
        )

        // TODO 1. 统计完成后将结果直接保存到Mysql
        //         数据库的数据是没有顺序。
        //         大屏展示数据时,查询排序

        // TODO 2. 统计完成后的将结果排序后保存到Mysql中
        // 将数据结构进行转换,便于分组排序
        val mapDS1 = reduceDS.map{
            case ((adid, time), sum) => {
                (adid, (time, sum))
            }
        }
        val groupDS: DStream[(String, Iterable[(Long, Int)])] = mapDS1.groupByKey()

        val resultDS = groupDS.mapValues(
            iter => {
                iter.toList.sortWith(
                    (left, right) => {
                        left._1 < right._1
                    }
                )
            }
        )

        // 当使用窗口计算时。
        // 1. 判断数据计算的范围:(1个采集周期, 多个采集周期)
        // 2. 多长时间进行计算(取决于滑动步长,默认是一个采集周期)
        // 3. 窗口范围和步长的大小。(采集周期的整数倍)
        // 4. 判断窗口范围和步长的关系
        //     窗口范围大,步长小,存在大量的重复数据,所以需要使用增量计算
        //     窗口范围大,步长大,存在重复数据比较少,可以独立计算。
        //     窗口一般大小就是一个小时

        resultDS.print()


        ssc.start()
        ssc.awaitTermination()
    }
    case class AdClickData( ts : String, area:String, city:String, userid:String, adid:String )
}

;