问题内容
【Game: tic-tac-toe (井字棋)】
两个玩家,一个max一个min,每次放X或O,交替走步,直到结束状态。
赢的定义:棋盘上有3个X或者3个O,在同一行或同一列或对角线上。
结束状态:max赢或min赢,或者棋盘被摆满平局。
使用minmax算法或alpha-beta剪枝策略实现井字棋的游戏。
算法流程
alpha-beta剪枝策略
相关设置
(1)搜索深度也就是往下推算的步数是9,叶子节点估价函数的定义为f(board)=-1为人玩家赢,f(board)=1为电脑赢,f(board)=0为平局;
(2)棋盘的位置用数字0-8来表示,对应的使用列表来存储;
(3)win元组中存储的是所有可能取胜的位置情况,位置组合也是用元组表示。
(4)为了输出棋盘,设置mark列表[‘·’,‘O’,‘X’]通过循环将使用的-1,1,0转换成标记符号。
具体程序
本人来自江南大学,同校的小伙伴们记得修改修改,以免查重
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 17 10:31:56 2020
@author: Administrator
"""
import random
# 用0-8的9个数字来表示棋盘的位置:0,1,2,3,4,5,6,7,8,
#WIN表示的是取胜的情况,即一行,一列,对角线相同时。
WIN = ((0, 1, 2), (3, 4, 5), (6, 7, 8),
(0, 3, 6), (1, 4, 7),(2, 5, 8),
(0, 4, 8), (2, 4, 6))
row= ((0, 1, 2), (3, 4, 5), (6, 7, 8))
# -1表示玩家 0表示空位 1表示电脑.
X_HUMAN= -1
EMPTY = 0
O_COMPUTER= 1
#棋盘上的值为0,1,-1,正好可以和mark中的标志相对应
#mark中的标志是为了输出棋盘
mark= ['·', 'O', 'X']
RESULT= ['平局', '电脑胜利', '玩家胜利']
HUMAN = 1
COMPUTER = 0
#输出当前的棋盘状态
def PRINT(board):
for i in row:
re= ' '
for j in i:
re+= mark[board[j]] + ' '
print(re)
#判断当前棋盘是否还有空位,true表示还有空位,false表示没有空位了
#判断当前棋盘board的每一个位置是否为空
def isEmpty(board):
for item in range(0,9):
if board[item] == EMPTY:
return True
return False
#判断是否已经产生赢家
#-1表示玩家获胜,1表示电脑获胜,0为平局或者还未结束
#在主程序的while循环中返回为0则表示还未结束,while循环结束后返回的0表示平局
def winner(board):
for i in WIN:
#-1即为玩家,1为电脑
if board[i[0]]==board[i[1]]==board[i[2]]==-1:
return -1
elif board[i[0]]==board[i[1]]==board[i[2]]==1:
return 1
return 0
#alpha-bate剪枝策略的具体内容
'''这里的搜索深度是9,叶子节点的估价函数值为1电脑赢,-1玩家赢,0是平局'''
def A_B(board, player, next_player, alpha, beta):
board1=board
win = winner(board1)
#有玩家获胜时
if win!= EMPTY:
return win
elif not isEmpty(board1):
# 没有空位,平局
return 0
# 检查当前玩家"player"的所有可落子点
for move in range(0,9):
if board1[move] == EMPTY:
board1[move] = player
# 落子之后交换玩家,继续检验
val = A_B(board1, next_player, player, alpha, beta)
board1[move] = EMPTY
#对于一个MAX节点,估计出其倒推值的下确界Alpha,
#若这个Alpha值不小于MAX的父节点(MIN节点)的估计倒推值的上确界Beta,即Alpha≥Beta,
#则就不必再扩展该MAX节点的其余子节点了,为Beta剪枝。
if player == O_COMPUTER: # 当前玩家是Max玩家,是1
if val > alpha:
alpha = val
if alpha >= beta:
return beta # 直接返回当前的最大可能取值beta, 进行剪枝
#对于一个MIN节点,估计出其倒推值的上确界Beta,
#这个Beta值不大于MIN的父节点(MAX节点)的估计倒推值的下确界Alpha,即Alpha≥Beta,
#则就不必再扩展该MIN节点的其余子节点了,为Alpha剪枝。
else: # 当前玩家是Min玩家,是-1
if val < beta:
beta = val
if beta <= alpha:
return alpha # 直接返回当前的最小可能取值alpha, 进行剪枝
if player == O_COMPUTER:
re = alpha
else:
re= beta
return re
#确定下一步电脑的走步,用到alpha-bate剪枝策略
def move(board):
board1=board
best= -2 #初始化最优值为-2,因为棋盘的值为-1,0,1
cmoves = []#用来存储可能的位置
for i in range(0,9):
if board1[i] == EMPTY:
board1[i] = O_COMPUTER#暂时将i位置处作为电脑的走步
#val为在暂时走步的基础上得出的结果
val=A_B(board1, X_HUMAN, O_COMPUTER, -2, 2)
board1[i] = EMPTY#恢复原状态
if val > best:
best = val
cmoves = [i]
if val == best:
cmoves.append(i)
return random.choice(cmoves)
#游戏开始
if __name__ == '__main__':
#初始化下一步,当输入有误时默认玩家先
next_move = HUMAN
first= input("请选择哪一方先下,输入x表示玩家先下,输入o表示电脑先下(小写):")
if first == "x":
next_move = HUMAN
elif first == "o":
next_move = COMPUTER
else:
print("输入有误,默认玩家先下")
# 初始化棋盘为空
board = [EMPTY for i in range(9)]
# 当棋盘还有空位且没有出现赢家时
while isEmpty(board) and winner(board)==EMPTY:
PRINT(board)
if next_move == HUMAN and isEmpty(board):
try:
hmove= int(input("请输入你要落子的位置(0-8):"))
if board[hmove] != EMPTY:
print('位置选择错误,请重新选择')
continue
board[hmove] = X_HUMAN
next_move = COMPUTER
except:
print("输入有误,请重试")
continue
if next_move == COMPUTER and isEmpty(board):
cmove=move(board)
board[cmove] = O_COMPUTER
next_move = HUMAN
#当没有空位或已经出现赢家时退出循环
# 输出结果
PRINT(board)
print(RESULT[winner(board)])
运行结果
完结
撒花~~~~~~~~
(没有玩家赢的情况呀)