算法的时间复杂度和空间复杂度
一.算法效率
1. 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
2. 算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
二.时间复杂度
1. 时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
Func1 执行的基本操作次数 : F ( N ) = N 2 + 2 ∗ N + 10 F(N) = N^2 + 2 * N + 10 F(N)=N2+2∗N+10
- N = 10 F(N) = 130
- N = 100 F(N) = 10210
- N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。
2. 大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数。
- 在修改后的运行次数函数中,只保留最高阶项。
- 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)
- N = 10 F(N) = 100
- N = 100 F(N) = 10000
- N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
3. 常见时间复杂度计算举例
3.1实例1
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
3.2 实例2
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++k)
{
++count;
}
for (int k = 0; k < N; ++k)
{
++count;
}
printf("%d\n", count);
}
3.3 实例3
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++k)
{
++count;
}
printf("%d\n", count);
}
3.4 实例4
// 计算strchr的时间复杂度?
const char* strchr ( const char* str, int character );
3.5 实例5
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
3.6 实例6
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n - 1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end - begin) >> 1);
if (a[mid] < x)
begin = mid + 1;
else if (a[mid] > x)
end = mid - 1;
else
return mid;
}
return EOF;
}
3.7 实例7
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if (0 == N)
return 1;
return Fac(N - 1) * N;
}
3.8 实例8
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if (N < 3)
return 1;
return Fib(N - 1) + Fib(N - 2);
}
3.9 实例答案及分析
-
实例1基本操作执行了 2 ∗ N + 10 2*N+10 2∗N+10次,通过推导大O阶方法知道,时间复杂度为 O ( N ) O(N) O(N)
-
实例2基本操作执行了 M + N M+N M+N次,有两个未知数M和N,时间复杂度为 O ( N + M ) O(N+M) O(N+M)
-
实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O ( 1 ) O(1) O(1)
-
实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
-
实例5基本操作执行最好N次,最坏执行了 ( N ∗ ( N + 1 ) ) / 2 (N*(N+1))/2 (N∗(N+1))/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O ( N 2 ) O(N^2) O(N2)
-
实例6基本操作执行最好1次,最坏 O ( l o g N ) O(logN) O(logN)次,时间复杂度为 O ( l o g N ) O(logN) O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成 l g N lgN lgN。(建议通过折纸查找的方式讲解 l o g N logN logN是怎么计算出来的)
-
实例7通过计算分析发现基本操作递归了N次,时间复杂度为 O ( N ) O(N) O(N)。
-
实例8通过计算分析发现基本操作递归了 2 N 2 ^N 2N次,时间复杂度为 O ( 2 N ) O(2^N) O(2N)。(建议画图递归栈帧的二叉树理解)
三. 空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
1. 实例1
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
2. 实例2
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if (n == 0)
return NULL;
long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
}
return fibArray;
}
3. 实例3
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if (N == 0)
return 1;
return Fac(N - 1) * N;
}
4. 实例答案及分析
- 实例1使用了常数个额外空间,所以空间复杂度为 O ( 1 ) O(1) O(1)
- 实例2动态开辟了N个空间,空间复杂度为 O ( N ) O(N) O(N)
- 实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O ( N ) O(N) O(N)
四. 常见复杂度对比
一般算法常见的复杂度如下:
执行次数 | 复杂度 | 阶数 |
---|---|---|
1234567 | O ( 1 ) O(1) O(1) | 常数阶 |
3 ∗ N + 4 3*N + 4 3∗N+4 | O ( N ) O(N) O(N) | 线性阶 |
3 ∗ N 2 + 4 ∗ N + 5 3*N^2+4*N+5 3∗N2+4∗N+5 | O ( N 2 ) O(N^2) O(N2) | 平方阶 |
6 ∗ l o g 2 N + 5 6*log_2N+5 6∗log2N+5 | O ( l o g N ) O(logN) O(logN) | 对数阶 |
6 ∗ N ∗ l o g 2 N + 5 6*N*log_2N+5 6∗N∗log2N+5 | O ( N l o g N ) O(NlogN) O(NlogN) | N l o g N NlogN NlogN阶 |
N 3 + 3 ∗ N 2 + 5 ∗ N + 7 N^3 +3 * N^2 +5 * N + 7 N3+3∗N2+5∗N+7 | O ( N 3 ) O(N^3) O(N3) | 立方阶 |
2 N 2^N 2N | O ( 2 N ) O(2^N) O(2N) | 指数阶 |
五. 复杂度的oj练习
1. 消失的数字
消失的数字OJ链接:https://leetcode-cn.com/problems/missing-number-lcci/
1.1 题目描述
数组nums包含从0到n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗?
注意:本题相对书上原题稍作改动
示例 1:
输入:[3,0,1]
输出:2
示例 2:
输入:[9,6,4,2,3,5,7,0,1]
输出:8
提示 1
你需要多长时间才能算出缺失数字的最小有效位?
提示 2
要找到缺失的数字中的最小有效位,你其实知道有多少个 0 和 1。例如,如果你看到最小有效位有 3 个 0 和 3 个 1,那么缺失的数字的最小值必定是 1。想想看:在任何 0 和 1 的序列中,你会得到 0,然后是 1,然后又是 0,然后又是 1,以此类推。
提示 3
一旦确定最小有效位是 0(或 1),就可以排除所有不以 0 作为最小有效位的数。这个问题和前面的有什么不同?
1.2 解答方法
排序(不满足题目要求)
//方法1:先排序,后判断
//缺点:时间复杂度超出要求
求和(次优解)
//方法2:从1到N求和,减去数组求和
//缺点:可能会溢出
int missingNumber(int* nums, int numsSize)
{
int sum = 0;
//sum = (0 + N) * (N + 1) / 2;
int sum_arr = 0;
for(int i = 1; i <= numsSize; i++)
{
sum += i;
sum_arr += nums[i - 1];
}
return sum - sum_arr;
}
int missingNumber(int* nums, int numsSize)
{
int sum = 0;
for(int i = 1; i <= numsSize; i++)
{
sum += i;
sum -= nums[i - 1];
}
return sum;
}
异或(最优解)
//方法3:异或
int missingNumber(int* nums, int numsSize)
{
int x = 0;
for(int i = 1; i <= numsSize; i++)
{
x ^= nums[i - 1];
x ^= i;
}
return x;
}
2. 轮转数组
轮转数组OJ链接:https://leetcode-cn.com/problems/rotate-array/
2.1 题目描述
给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
提示:
1
<
=
n
u
m
s
.
l
e
n
g
t
h
<
=
105
1 <= nums.length <= 105
1<=nums.length<=105
−
231
<
=
n
u
m
s
[
i
]
<
=
231
−
1
-231 <= nums[i] <= 231 - 1
−231<=nums[i]<=231−1
0
<
=
k
<
=
105
0 <= k <= 105
0<=k<=105
提示 1
The easiest solution would use additional memory and that is perfectly fine.
提示 2
The actual trick comes when trying to solve this problem without using any additional memory. This means you need to use the original array somehow to move the elements around. Now, we can place each element in its original location and shift all the elements around it to adjust as that would be too costly and most likely will time out on larger input arrays.
提示 3
One line of thought is based on reversing the array (or parts of it) to obtain the desired result. Think about how reversal might potentially help us out by using an example.
提示 4
The other line of thought is a tad bit complicated but essentially it builds on the idea of placing each element in its original position while keeping track of the element originally in that position. Basically, at every step, we place an element in its rightful position and keep track of the element already there or the one being overwritten in an additional variable. We can’t do this in one linear pass and the idea here is based on cyclic-dependencies between elements.
2.2 解答方法
2.2.1 暴力求解(不满足题目要求)
//方法一:暴力求解
//时间复杂度:O(n^2)
void rotate(int* nums, int numsSize, int k)
{
k = k % numsSize;
if(k == 0)
{
return;
}
else
{
for(int m = 0; m < k; m++)
{
int tmp = nums[numsSize - 1];
for(int i = numsSize - 1; i > 0; i--)//每次移动一位
{
nums[i] = nums[i - 1];
}
nums[0] = tmp;
}
}
}
缺点:不满足时间复杂度要求
2.2.2 三段逆置
//方法二:三段逆置
//时间复杂度:O(n)
//逆置1:前n - k个元素
//逆置2:后k个元素
//逆置3:整体逆置
//[left, right]
void Reverse(int* nums, int left, int right)
{
while(left < right)
{
int tmp = nums[left];
nums[left] = nums[right];
nums[right] = tmp;
left++;
right--;
}
}
void rotate(int* nums, int numsSize, int k)
{
k = k % numsSize;
if(k == 0)
{
return;
}
else
{
Reverse(nums, 0, numsSize - k - 1);
Reverse(nums, numsSize - k, numsSize - 1);
Reverse(nums, 0, numsSize - 1);
}
}