💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥
📋📋📋本文目录如下:⛳️⛳️⛳️
目录
1 概述
集中式空调系统作为现代城市大型建筑不可缺少的部分,其耗电量越来越大,部分大中城市夏
季中央空调的耗电量已占其高峰时段用电量的 20 %以上[1-2],与工业用电负荷一起造成了电力尖
峰负荷,加大了电网的峰谷负荷差,导致白天用电 紧张、而夜晚大量电力却无法消耗。采用冰蓄冷系统,通过在夜间低谷时段蓄冷,在白天供冷时段将冷量释放,可以减少空调制冷机组在用电高峰期的耗能,一方面可以有效实现电力“移峰填谷”,另一方面由于存在峰谷电价差,冰蓄冷系统也节约空调整体运行费用,带来经济效益。
在现阶段全球气温升高的背景下,我觉得这个课题很值得研究。由于二氧化碳的大量排放,全球变暖。
(1)所有新型电力系统的提出思维独到,大力发展风、光等新能源尤为重要,所以我写了很多微电网的文章代码。搜索方法如下。
(2)需求响应主要分为基于价格和基于激励的需求响应。以往电力系统调度主要靠发电侧,借鉴了漂亮国,国家也开始重视需求响应。需求响应计划鼓励消费者在电网高峰时削减负荷。我也写了很多关于需求响应的文章代码。
(3)本文的创新点:具有冰蓄冷系的建筑物主要使用它来转移冷负荷。当电价低时生产冰或冷冻水,并在电价高时储存以给用户提供冷能。本文用随机最优控制和模型预测控制 (MPC) 结合求解。
2 控制算法讲解
本文使用了两种算法: 随机开环最优控制 (SOOC) 和模型预测控制 (MPC) 。
2.1 随机开环最优控制 (OLOC)
对于扰动随机的随机最优控制问题,本文采用文献[8]中的随机最优开环控制方法(SOOC)解决。下面重点讲解模型预测控制(MPC)。
2.2 模型预测控制(MPC)
2.2.1 概述
MPC 最早起源于石油化工等工业界,旨在解决经典的比例-积分-微分(PID)控制难以处理多变量约束优化控制的问题。作为一种基于模型的控制算法,其滚动优化问题中的系统模型可以是描述系统动态行为的任意形式的模型,因此从原理上该方法可处理时变或非时变、线性或非线性、有时滞或无时滞的系统约束最优控制问题。正是基于该特点,MPC 作为一类适用性非常强的控制算法在电力系统优化控制领域得到了广泛的应用。
随着 MPC 理论日趋成熟,国内外很多企业专门研发了商业化MPC 软件包。
模 型 预 测 控 制(model predictive control,MPC)是 近 年 来 最 引 人 关 注 的 一 类 反 馈 控 制 策略,主要由模型预测、滚动优化和反馈校正 3 个环节构成。
2.2.2 作用机理
MPC 从 20 世纪七八十年代开始萌芽,经历了模型算法控制、动态矩阵控制、广义预测控制 3 个阶段的过渡,已经发展为成熟的控制理论[21],其原理如图 1 所示,求解步骤为:在每一个采样时刻,根据当前测量信息,在线求解一个有限时域开环优化问题,并将得到的控制序列的第 1 个元素作用于被控对象。在下一个采样时刻,重复上述过程,用新的测量值重构优化问题并重新求解[22],可以得出如下结论。
1)与常规最优控制方法不同,MPC 的优化目标并非全局不变,而是采用滚动向前式的有限时域优化目标,以局部最优解逐级逼近全局最优解。这种有限时域优化策略可兼顾模型失配、时变等不确定性,是最优控制和不确定性情况下的折中。
2)MPC 将控制问题转化为有限时域的滚动式开环优化问题,能考虑被控对象的未来行为特征,易于处理多耦合系统,故可结合各种优化求解算法而易于拓展。
图1 MPC原理
3 数学模型建立
本文详细对成本进行建模。物理模型是建立在文献[6]中提出的物理模型的基础上,扩展到包括第二台制冰机、考虑制冰机的爬坡约束、时变性能系数以及非理想的存储和热交换器效率。得到的模型是一个具有线性时变动力学的完全观测MIMO随机系统。
在后文中,变量k对集合进行了索引={0, . . . , N− 1},N =
/ Δt为控制视界T中长度Δt (小时)的离散时间步数(本文算例中Δt=0.5)。在本文中,我们取T = 24小时,虽然稍作修改,视界可以延长到一个月或一个冷却季.
3.1 物理模型
3.1.1 系统的状态变量