计算机视觉自己训练数据集并进行测试
1.官网上下载yolo5
https://github.com/ultralytics/yolov5
2.制作数据集
2.1数据集进行标注
①下载lablme并打开labelm
②进行数据标注,并进行存放两个文件夹
③选择矩形进行框选,或者可以在Edit里面选择其他图像,另外可以在File里面选择文件自动保存
④将jason数据转为txt的yolo格式
import json
import os
name2id = {'mask': 0, 'nomask': 1} # 标签名称
def convert(img_size, box):
dw = 1.0 / img_size[0]
dh = 1.0 / img_size[1]
x = (box[0] + box[2]) / 2.0
y = (box[1] + box[3]) / 2.0
w = box[2] - box[0]
h = box[3] - box[1]
x *= dw
w *= dw
y *= dh
h *= dh
return x, y, w, h
def decode_json(json_folder_path, json_name):
txt_name = os.path.join('D:/jetbrains/PycharmProjects/Computer_Vision/experiment/12109990929_ex5/jason/Annotations',
json_name.replace('.json', '.txt'))
os.makedirs(os.path.dirname(txt_name), exist_ok=True) # 确保目录存在
try:
with open(txt_name, 'w') as txt_file, open(os.path.join(json_folder_path, json_name), 'r', encoding='gb2312',
errors='ignore') as json_file:
data = json.load(json_file)
img_w = data['imageWidth']
img_h = data['imageHeight']
for shape in data['shapes']:
label_name = shape['label']
if shape['shape_type'] == 'rectangle':
x1, y1 = map(int, shape['points'][0])
x2, y2 = map(int, shape['points'][1])
bbox = convert((img_w, img_h), (x1, y1, x2, y2))
txt_file.write(f"{name2id[label_name]} {' '.join(map(str, bbox))}\n")
# 成功转换后删除原始 JSON 文件
os.remove(os.path.join(json_folder_path, json_name))
except KeyError as e:
print(f"键错误:{e} 在文件 {json_name} 中")
except json.JSONDecodeError as e:
print(f"JSON 解码错误:{e} 在文件 {json_name} 中")
except Exception as e:
print(f"意外错误:{e} 在文件 {json_name} 中")
if __name__ == "__main__":
json_folder_path = 'D:/jetbrains/PycharmProjects/Computer_Vision/experiment/12109990929_ex5/jason/Annotations'
json_names = [file for file in os.listdir(json_folder_path) if file.endswith('.json')]
for json_name in json_names:
decode_json(json_folder_path, json_name)
2.2数据集进行划分
yolo数据集划分(7:2:1)划分
import os, shutil, random
from tqdm import tqdm
"""
标注文件是yolo格式(txt文件)
训练集:验证集:测试集 (7:2:1)
"""
def split_img(img_path, label_path, split_list):
try:
Data = './VOCdevkit/VOC2007/ImageSets'
# Data是你要将要创建的文件夹路径(路径一定是相对于你当前的这个脚本而言的)
# os.mkdir(Data)
train_img_dir = Data + '/images/train'
val_img_dir = Data + '/images/val'
test_img_dir = Data + '/images/test'
train_label_dir = Data + '/labels/train'
val_label_dir = Data + '/labels/val'
test_label_dir = Data + '/labels/test'
# 创建文件夹
os.makedirs(train_img_dir)
os.makedirs(train_label_dir)
os.makedirs(val_img_dir)
os.makedirs(val_label_dir)
os.makedirs(test_img_dir)
os.makedirs(test_label_dir)
except:
print('文件目录已存在')
train, val, test = split_list
all_img = os.listdir(img_path)
all_img_path = [os.path.join(img_path, img) for img in all_img]
# all_label = os.listdir(label_path)
# all_label_path = [os.path.join(label_path, label) for label in all_label]
train_img = random.sample(all_img_path, int(train * len(all_img_path)))
train_img_copy = [os.path.join(train_img_dir, img.split('\\')[-1]) for img in train_img]
train_label = [toLabelPath(img, label_path) for img in train_img]
train_label_copy = [os.path.join(train_label_dir, label.split('\\')[-1]) for label in train_label]
for i in tqdm(range(len(train_img)), desc='train ', ncols=80, unit='img'):
_copy(train_img[i], train_img_dir)
_copy(train_label[i], train_label_dir)
all_img_path.remove(train_img[i])
val_img = random.sample(all_img_path, int(val / (val + test) * len(all_img_path)))
val_label = [toLabelPath(img, label_path) for img in val_img]
for i in tqdm(range(len(val_img)), desc='val ', ncols=80, unit='img'):
_copy(val_img[i], val_img_dir)
_copy(val_label[i], val_label_dir)
all_img_path.remove(val_img[i])
test_img = all_img_path
test_label = [toLabelPath(img, label_path) for img in test_img]
for i in tqdm(range(len(test_img)), desc='test ', ncols=80, unit='img'):
_copy(test_img[i], test_img_dir)
_copy(test_label[i], test_label_dir)
def _copy(from_path, to_path):
shutil.copy(from_path, to_path)
def toLabelPath(img_path, label_path):
img = img_path.split('\\')[-1]
label = img.split('.jpg')[0] + '.txt'
return os.path.join(label_path, label)
if __name__ == '__main__':
img_path = 'JPEGImage' # 你的图片存放的路径(路径一定是相对于你当前的这个脚本文件而言的)
label_path = 'Annotations' # 你的txt文件存放的路径(路径一定是相对于你当前的这个脚本文件而言的)
split_list = [0.7, 0.2, 0.1] # 数据集划分比例[train:val:test]
split_img(img_path, label_path, split_list)
json转voc
import cv2
import json
import os
import os.path as osp
import shutil
import chardet
def get_encoding(path):
f = open(path, 'rb')
data = f.read()
file_encoding = chardet.detect(data).get('encoding')
f.close()
return file_encoding
def is_pic(img_name):
valid_suffix = ['JPEG', 'jpeg', 'JPG', 'jpg', 'BMP', 'bmp', 'PNG', 'png']
suffix = img_name.split('.')[-1]
if suffix not in valid_suffix:
return False
return True
class X2VOC(object):
def __init__(self):
pass
def convert(self, image_dir, json_dir, dataset_save_dir):
"""转换。
Args:
image_dir (str): 图像文件存放的路径。
json_dir (str): 与每张图像对应的json文件的存放路径。
dataset_save_dir (str): 转换后数据集存放路径。
"""
assert osp.exists(image_dir), "The image folder does not exist!"
assert osp.exists(json_dir), "The json folder does not exist!"
if not osp.exists(dataset_save_dir):
os.makedirs(dataset_save_dir)
# Convert the image files.
new_image_dir = osp.join(dataset_save_dir, "JPEGImages")
if osp.exists(new_image_dir):
raise Exception(
"The directory {} is already exist, please remove the directory first".
format(new_image_dir))
os.makedirs(new_image_dir)
for img_name in os.listdir(image_dir):
if is_pic(img_name):
shutil.copyfile(
osp.join(image_dir, img_name),
osp.join(new_image_dir, img_name))
# Convert the json files.
xml_dir = osp.join(dataset_save_dir, "Annotations")
if osp.exists(xml_dir):
raise Exception(
"The directory {} is already exist, please remove the directory first".
format(xml_dir))
os.makedirs(xml_dir)
self.json2xml(new_image_dir, json_dir, xml_dir)
class LabelMe2VOC(X2VOC):
"""将使用LabelMe标注的数据集转换为VOC数据集。
"""
def json2xml(self, image_dir, json_dir, xml_dir):
import xml.dom.minidom as minidom
i = 0
for img_name in os.listdir(image_dir):
img_name_part = osp.splitext(img_name)[0]
json_file = osp.join(json_dir, img_name_part + ".json")
i += 1
if not osp.exists(json_file):
os.remove(osp.join(image_dir, img_name))
continue
xml_doc = minidom.Document()
root = xml_doc.createElement("annotation")
xml_doc.appendChild(root)
node_folder = xml_doc.createElement("folder")
node_folder.appendChild(xml_doc.createTextNode("JPEGImages"))
root.appendChild(node_folder)
node_filename = xml_doc.createElement("filename")
node_filename.appendChild(xml_doc.createTextNode(img_name))
root.appendChild(node_filename)
with open(json_file, mode="r", \
encoding=get_encoding(json_file)) as j:
json_info = json.load(j)
if 'imageHeight' in json_info and 'imageWidth' in json_info:
h = json_info["imageHeight"]
w = json_info["imageWidth"]
else:
img_file = osp.join(image_dir, img_name)
im_data = cv2.imread(img_file)
h, w, c = im_data.shape
node_size = xml_doc.createElement("size")
node_width = xml_doc.createElement("width")
node_width.appendChild(xml_doc.createTextNode(str(w)))
node_size.appendChild(node_width)
node_height = xml_doc.createElement("height")
node_height.appendChild(xml_doc.createTextNode(str(h)))
node_size.appendChild(node_height)
node_depth = xml_doc.createElement("depth")
node_depth.appendChild(xml_doc.createTextNode(str(3)))
node_size.appendChild(node_depth)
root.appendChild(node_size)
for shape in json_info["shapes"]:
if 'shape_type' in shape:
if shape["shape_type"] != "rectangle":
continue
(xmin, ymin), (xmax, ymax) = shape["points"]
xmin, xmax = sorted([xmin, xmax])
ymin, ymax = sorted([ymin, ymax])
else:
points = shape["points"]
points_num = len(points)
x = [points[i][0] for i in range(points_num)]
y = [points[i][1] for i in range(points_num)]
xmin = min(x)
xmax = max(x)
ymin = min(y)
ymax = max(y)
label = shape["label"]
node_obj = xml_doc.createElement("object")
node_name = xml_doc.createElement("name")
node_name.appendChild(xml_doc.createTextNode(label))
node_obj.appendChild(node_name)
node_diff = xml_doc.createElement("difficult")
node_diff.appendChild(xml_doc.createTextNode(str(0)))
node_obj.appendChild(node_diff)
node_box = xml_doc.createElement("bndbox")
node_xmin = xml_doc.createElement("xmin")
node_xmin.appendChild(xml_doc.createTextNode(str(xmin)))
node_box.appendChild(node_xmin)
node_ymin = xml_doc.createElement("ymin")
node_ymin.appendChild(xml_doc.createTextNode(str(ymin)))
node_box.appendChild(node_ymin)
node_xmax = xml_doc.createElement("xmax")
node_xmax.appendChild(xml_doc.createTextNode(str(xmax)))
node_box.appendChild(node_xmax)
node_ymax = xml_doc.createElement("ymax")
node_ymax.appendChild(xml_doc.createTextNode(str(ymax)))
node_box.appendChild(node_ymax)
node_obj.appendChild(node_box)
root.appendChild(node_obj)
with open(osp.join(xml_dir, img_name_part + ".xml"), 'w') as fxml:
xml_doc.writexml(
fxml,
indent='\t',
addindent='\t',
newl='\n',
encoding="utf-8")
def convert(pics,anns,save_dir):
"""
将使用labelme标注的数据转换为VOC格式
请将labelme标注的文件中,所有img文件保存到pics文件夹中,所有xml文件保存到anns文件夹中,结构如下:
--labelmedata
---pics
----img0.jpg
----img1.jpg
----......
---anns
----img0.mxl
----img1.xml
----......
:param pics: img文件所在文件夹的路径
:param anns: xml文件所在文件夹的路径
:param save_dir: 输出VOC格式数据的保存路径
:return:
"""
labelme2voc = LabelMe2VOC().convert
labelme2voc(pics, anns, save_dir)
if __name__=="__main__":
convert(pics=r"JPEGImages", # 修改图片路径
anns=r"json", # 修改json格式文件路径
save_dir=r"VOC") # 保存VOC格式的路径
VOC转YOLO格式
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
def convert(size, box):
x_center = (box[0] + box[1]) / 2.0
y_center = (box[2] + box[3]) / 2.0
x = x_center / size[0]
y = y_center / size[1]
w = (box[1] - box[0]) / size[0]
h = (box[3] - box[2]) / size[1]
return (x, y, w, h)
def convert_annotation(xml_files_path, save_txt_files_path, classes):
xml_files = os.listdir(xml_files_path)
print(xml_files)
for xml_name in xml_files:
print(xml_name)
xml_file = os.path.join(xml_files_path, xml_name)
out_txt_path = os.path.join(save_txt_files_path, xml_name.split('.')[0] + '.txt')
out_txt_f = open(out_txt_path, 'w')
tree = ET.parse(xml_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
# b=(xmin, xmax, ymin, ymax)
print(w, h, b)
bb = convert((w, h), b)
out_txt_f.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
if __name__ == "__main__":
# 需要转换的类别,需要一一对应
classes1 = ['boat', 'cat']
# 2、voc格式的xml标签文件路径
xml_files1 = r'C:\Users\86159\Desktop\VOC2007\Annotations'
# 3、转化为yolo格式的txt标签文件存储路径
save_txt_files1 = r'C:\Users\86159\Desktop\VOC2007\label'
convert_annotation(xml_files1, save_txt_files1, classes1)
最后的文件划分如下
3.进行yolo5测试,在yolo5-master官方包下
3.1修改自己的data.yaml用于数据集(在仿照data/coco.yaml)
train: ../Maskdata/train/images#训练集
val: ../Maskdata/val/images#测试集
test: ../Maskdata/test/images#验证集
nc: 2#类别
names:
0: mask
1: nomask
3.2复制models/yolov5s.yaml重命名为my_yolov5s.yaml(修改类别)
3.3目录结构
4.训练yolo5,运行train.py
4.1修改参数,找到def parse_opt(known=False):
训练结果