Bootstrap

流媒体协议.之(RTP,RTCP,RTSP,RTMP,HTTP)(二)

继续上篇介绍,本篇介绍一下封装RTP的数据格式,如何将摄像头采集的码流,音频的码流,封装到rtp里,传输。
有自己私有协议例子,有rtp协议,参考代码。注意不是rtsp协议。

在这里插入图片描述

一、私有协议

玩过tcp协议都知道,有这么一层关系
在这里插入图片描述

玩过网络开发的,应该都自己定义封装过私有协议。

我把tcp,udp,网络传输封装在另一个文件,网络传输层。然后分一个模块,私有协议,封装有效数据,数据封装层。

封装一个协议头

typedef struct MediumPrivateHead
{
    SX_U32 	u32Mf;
    SX_U16 	u16Type;
    SX_U32 	u32Ts;
    SX_U16 	u16Seqno;
    SX_U32 	u32Length;
    SX_U8 	u8Ch;
    SX_U8 	u8Of;
    SX_U8 	u8Marker;
    SX_U8 	u8X;
}T_MediumPrivateHead, *PT_MediumPrivateHead;
#pragma pack()

typedef enum PacketType
{
    PACKET_TYPE_H264 = 118,
    PACKET_TYPE_JPEG = 119,
    PACKET_TYPE_AAC  = 120,
    PACKET_TYPE_G711 = 121,
    PACKET_TYPE_H265 = 122,
    PACKET_TYPE_ADPCM_DVI4 = 123,
    PACKET_TYPE_G721 = 124,
	PACKET_TYPE_RS422 = 125,
	    
    PACKET_TYPE_BUTT = 126,
}E_PacketType;

分片发送,数据包太大,进行分包传输,不管是什么协议,都需要调用这个函数来分包传输,传入一个bufer数据指针。

static SX_U32 MEDIUM_UDP_WriteFrame1( SX_S32 ch, SX_S8 ePacketType, void *handle, SX_S8 *ps8Buffer, SX_U32 u32Length, SX_U64 u64Pts, SX_S8 *ps8TsString )
{
    PT_Medium ptTmp = (PT_Medium)handle;
    SX_U32 u32Pos = 0;
    SX_U32 u32LeftLen = u32Length;
    SX_S8 *ps8Tmp = ps8Buffer;
    int allow_send_max_len = 0;
    //if(ptTmp->u32FragmentLen < 300) // len too short
		//ptTmp->u32FragmentLen = 300;
	
    allow_send_max_len = ptTmp->u32FragmentLen - sizeof(T_MediumPrivateHead);
    if( u32LeftLen <= allow_send_max_len )
    {

	if( MEDIUM_UDP_WritePrivatePacket( ch, ePacketType, handle, ps8Tmp, u32LeftLen, u64Pts, 1, 0 ) < 0 )
		return 0;	
    }
    else
    {
        while( u32LeftLen > allow_send_max_len )
        {
            if( MEDIUM_UDP_WritePrivatePacket( ch, ePacketType, handle, ps8Tmp + u32Pos, allow_send_max_len, u64Pts, 0, 0 ) < 0 )
			return 0;
			
            u32LeftLen -= allow_send_max_len;
            u32Pos += allow_send_max_len;
        }
		

        if( MEDIUM_UDP_WritePrivatePacket( ch, ePacketType, handle, ps8Tmp + u32Pos, u32LeftLen, u64Pts, 1, 0 ) < 0 )
		return 0;
    }
	
    return u32Length;
}

封装私有协议包,供上面函数调用,如果是其他协议,就封装另一个函数。将有效数据和协议头封装,打包,通过udp或tcp的接口sendto发送出去


static SX_S32 MEDIUM_UDP_WritePrivatePacket( SX_S32 ch, SX_S8 ePacketType, void *handle, SX_S8 *ps8Buffer, SX_U32 u32Length, SX_U64 u64Pts, SX_U32 u32Marker, SX_U32 u32X )
{
	if(ch < 0 || ch >= MEDIUM_MAX_CH)
		return -1;

    SX_U32 u32Pos = 0;
    PT_Medium ptTmp 	= (PT_Medium)handle;
    pthread_mutex_lock( &ptTmp->mutex);
	
    SX_S8 *ps8Buf	= ptTmp->ps8Buffer;
    memset(ps8Buf ,0 ,MAX_CONFIG_FILE_LEN);
	
    SX_U32 u32myframeLen;
    if( u32Length > ptTmp->u32FragmentLen - sizeof(T_MediumPrivateHead))
        u32myframeLen = ptTmp->u32FragmentLen- sizeof(T_MediumPrivateHead);
    else
        u32myframeLen = u32Length;
    
	//file private head	
	//PT_VedioDataPkt pkthead1 = (PT_VedioDataPkt)(ps8Buf);
        //PT_MediumPrivateHead ptHead2 = (PT_MediumPrivateHead)(&pkthead1->headprivate);
        PT_MediumPrivateHead ptHead2 = (PT_MediumPrivateHead)(ps8Buf);
        memset((SX_U8 *)ptHead2, 0, sizeof(T_MediumPrivateHead) );
        ptHead2->u32Mf 	            = (SX_U32)0x4b4e4148;
        ptHead2->u16Type           = (SX_U16)ePacketType;
        ptHead2->u32Ts 	            = (SX_U32)u64Pts;	//not used
        ptHead2->u16Seqno 	    = ((ePacketType ==  PACKET_TYPE_AAC )? (SX_U16)ptTmp->u16AudioSeqno[ch] : (SX_U16)ptTmp-  >u16VedioSeqno[ch]);
        ptHead2->u32Length        = (SX_U32)u32myframeLen;
        ptHead2->u8Ch 	            = (SX_U8)ch;
        ptHead2->u8Of 		    = (SX_U8)0x19;
        ptHead2->u8Marker 	    = (SX_U8)u32Marker;
        ptHead2->u8X 		    = (SX_U8)u32X;

        u32Pos 				    = sizeof(T_MediumPrivateHead);
        //filevedio frame data
	memcpy( ps8Buf + u32Pos, ps8Buffer, u32myframeLen );
	//CRC32 	= 0xC4C3C2C1;
	*(ps8Buf + u32Pos + u32myframeLen + 0)= 0xC1;
	*(ps8Buf + u32Pos + u32myframeLen + 1)= 0xC2;
	*(ps8Buf + u32Pos + u32myframeLen + 2)= 0xC3;
	*(ps8Buf + u32Pos + u32myframeLen + 3)= 0xC4;
    
	if(ePacketType ==  PACKET_TYPE_AAC)
        {
            //printf("++   u16AudioSeqno  %ld    u32Length  %ld ++\r\n",ptTmp->u16AudioSeqno[ch],sizeof(T_MediumPrivateHead) + ptHead2->u32Length + 4);
	    ptTmp->u16AudioSeqno[ch]++;
        }
        else
        {
            ptTmp->u16VedioSeqno[ch]++;
        }
        
        if(ptTmp->u16AudioSeqno[ch] > 65536)
            ptTmp->u16AudioSeqno[ch] = 0;

        if(ptTmp->u16VedioSeqno[ch] > 65536)
            ptTmp->u16VedioSeqno[ch] = 0;
#endif

    pthread_mutex_unlock( &ptTmp->mutex);

	ts1 = get_sys_ms();
	  
      if( sendto(ptTmp->fd,
      	 ps8Buf,
      	 sizeof(T_MediumPrivateHead) + u32myframeLen + 4,	//headlen + datalen + crclen,
      	 0,
      	 (struct sockaddr *)&ptTmp->other[(ePacketType ==  PACKET_TYPE_AAC) ? 1 : 0],
      	 sizeof(struct sockaddr_in)) < 0 )	            
      TRACE( DL_WARNING, "udp send failed\n" );
        
    return 0;
}

二、 RTP协议

RTP传输音视频过程如下:
在这里插入图片描述

在这里插入图片描述

如果不按我上面私有协议传输,那就需要封装一个RTP协议,要熟悉协议格式,进行封装。

RTP报文格式
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
用C语言来封装,如下
在这里插入图片描述

取一段抓包数据
在这里插入图片描述

三、RTP封装视频

3.1、RTP封装H264

首先看一下H264 NALU头部定义:一个字节,是8位,按位进行划分,代表的意义。

在这里插入图片描述

F: 1 个比特. 一般为0 forbidden_zero_bit. 在 H.264 规范中规定了这一位必须为 0.
NRI: 2 个比特. nal_ref_idc. 取 00 ~ 11, 指示nalu单元的重要性,, 如 00 的 NALU 解码器可以丢弃而不影响图像的回放. 不过一般情况下不太关心这个属性.
Type: 5 个比特.nal_unit_type. 这个 NALU 单元的类型.
在这里插入图片描述

RTP打包原则

RTP的包长度必须要小于MTU(最大传输单元),IP协议中MTU的最大长度为1500字节。除去IP报头(20字节)、UDP报头(8字节)、RTP头(12字节),所有RTP有效载荷(即NALU内容)的长度不得超过1460字节。TCP(20字节)。上面我的例子代码有参考,分包。

RTP有三种封包模式:单一封包模式,组合封包模式,分片封包模式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这是我的协议,我所有的通信协议,都会加上这么一个起始头,用来区别本系统,发送的数据包开始字段
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3.4、PES分组头部
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可以看到RTP数据头,协议,非常多,没什么难度,就是多,一般我们都不会从新造轮子,网上很多大佬,开源分享,移植过来,修改就OK了,下篇,直接贴代码,封装协议,要老命,自己去手撸出来,手撸linux内核代码没必要。

找到一个博主封装的h264,封包,解包

RTP荷载H264的代码参考:
http://blog.csdn.net/dengzikun/article/details/5807694

RTP荷载PS流的代码参考:

http://www.pudn.com/downloads33/sourcecode/windows/multimedia/detail105823.html
http://www.oschina.net/code/snippet_99626_23737

这是他说的
H264 RTP打包类、解包类,实现了单个NAL单元包和FU_A分片单元包。对于丢包处理,采用简单的策略:丢弃随后的所有数据包,直到收到关键帧。测试效果还不错,代码贴上来,若能为同道中人借鉴一二,足矣。两个类的使用说明如下(省略了错误处理过程):

这是框架简介,封装的两个函数

DWORD H264SSRC ;
 CH264_RTP_PACK pack ( H264SSRC ) ;
 BYTE *pVideoData ;
 DWORD Size, ts ;
 bool IsEndOfFrame ;
 WORD wLen ;
 pack.Set ( pVideoData, Size, ts, IsEndOfFrame ) ;
 BYTE *pPacket ;
 while ( pPacket = pack.Get ( &wLen ) )
 {
  // rtp packet process
  // ...
 }


 HRESULT hr ;
 CH264_RTP_UNPACK unpack ( hr ) ;
 BYTE *pRtpData ;
 WORD inSize;
 int outSize ;
 BYTE *pFrame = unpack.Parse_RTP_Packet ( pRtpData, inSize, &outSize ) ;
 if ( pFrame != NULL )
 {
  // frame process
  // ...
 }

这是函数体

// class CH264_RTP_PACK start  
  
class CH264_RTP_PACK  
{  
    #define RTP_VERSION 2  
  
    typedef struct NAL_msg_s   
    {  
        bool eoFrame ;  
        unsigned char type;     // NAL type  
        unsigned char *start;   // pointer to first location in the send buffer  
        unsigned char *end; // pointer to last location in send buffer  
        unsigned long size ;  
    } NAL_MSG_t;  
  
    typedef struct   
    {  
        //LITTLE_ENDIAN  
        unsigned short   cc:4;      /* CSRC count                 */  
        unsigned short   x:1;       /* header extension flag      */  
        unsigned short   p:1;       /* padding flag               */  
        unsigned short   v:2;       /* packet type                */  
        unsigned short   pt:7;      /* payload type               */  
        unsigned short   m:1;       /* marker bit                 */  
  
        unsigned short    seq;      /* sequence number            */  
        unsigned long     ts;       /* timestamp                  */  
        unsigned long     ssrc;     /* synchronization source     */  
    } rtp_hdr_t;  
  
    typedef struct tagRTP_INFO  
    {  
        NAL_MSG_t   nal;        // NAL information  
        rtp_hdr_t   rtp_hdr;    // RTP header is assembled here  
        int hdr_len;            // length of RTP header  
  
        unsigned char *pRTP;    // pointer to where RTP packet has beem assembled  
        unsigned char *start;   // pointer to start of payload  
        unsigned char *end;     // pointer to end of payload  
  
        unsigned int s_bit;     // bit in the FU header  
        unsigned int e_bit;     // bit in the FU header  
        bool FU_flag;       // fragmented NAL Unit flag  
    } RTP_INFO;  
  
public:  
    CH264_RTP_PACK(unsigned long H264SSRC, unsigned char H264PAYLOADTYPE=96, unsigned short MAXRTPPACKSIZE=1472 )  
    {  
        m_MAXRTPPACKSIZE = MAXRTPPACKSIZE ;  
        if ( m_MAXRTPPACKSIZE > 10000 )  
        {  
            m_MAXRTPPACKSIZE = 10000 ;  
        }  
        if ( m_MAXRTPPACKSIZE < 50 )  
        {  
            m_MAXRTPPACKSIZE = 50 ;  
        }  
          
        memset ( &m_RTP_Info, 0, sizeof(m_RTP_Info) ) ;  
  
        m_RTP_Info.rtp_hdr.pt = H264PAYLOADTYPE ;  
        m_RTP_Info.rtp_hdr.ssrc = H264SSRC ;  
        m_RTP_Info.rtp_hdr.v = RTP_VERSION ;  
  
        m_RTP_Info.rtp_hdr.seq = 0 ;  
    }  
  
    ~CH264_RTP_PACK(void)  
    {  
    }  
  
    //传入Set的数据必须是一个完整的NAL,起始码为0x00000001。  
    //起始码之前至少预留10个字节,以避免内存COPY操作。  
    //打包完成后,原缓冲区内的数据被破坏。  
    bool Set ( unsigned char *NAL_Buf, unsigned long NAL_Size, unsigned long Time_Stamp, bool End_Of_Frame )  
    {  
        unsigned long startcode = StartCode(NAL_Buf) ;  
          
        if ( startcode != 0x01000000 )  
        {  
            return false ;  
        }  
  
        int type = NAL_Buf[4] & 0x1f ;  
        if ( type < 1 || type > 12 )  
        {  
            return false ;  
        }  
  
        m_RTP_Info.nal.start = NAL_Buf ;  
        m_RTP_Info.nal.size = NAL_Size ;  
        m_RTP_Info.nal.eoFrame = End_Of_Frame ;  
        m_RTP_Info.nal.type = m_RTP_Info.nal.start[4] ;  
        m_RTP_Info.nal.end = m_RTP_Info.nal.start + m_RTP_Info.nal.size ;  
  
        m_RTP_Info.rtp_hdr.ts = Time_Stamp ;  
  
        m_RTP_Info.nal.start += 4 ; // skip the syncword  
                                      
        if ( (m_RTP_Info.nal.size + 7) > m_MAXRTPPACKSIZE )  
        {  
            m_RTP_Info.FU_flag = true ;  
            m_RTP_Info.s_bit = 1 ;  
            m_RTP_Info.e_bit = 0 ;  
  
            m_RTP_Info.nal.start += 1 ; // skip NAL header  
        }  
        else  
        {  
            m_RTP_Info.FU_flag = false ;  
            m_RTP_Info.s_bit = m_RTP_Info.e_bit = 0 ;  
        }  
          
        m_RTP_Info.start = m_RTP_Info.end = m_RTP_Info.nal.start ;  
        m_bBeginNAL = true ;  
  
        return true ;  
    }  
  
    //循环调用Get获取RTP包,直到返回值为NULL  
    unsigned char* Get ( unsigned short *pPacketSize )  
    {  
        if ( m_RTP_Info.end == m_RTP_Info.nal.end )  
        {  
            *pPacketSize = 0 ;  
            return NULL ;  
        }  
  
        if ( m_bBeginNAL )  
        {  
            m_bBeginNAL = false ;  
        }  
        else  
        {  
            m_RTP_Info.start = m_RTP_Info.end;  // continue with the next RTP-FU packet  
        }  
  
        int bytesLeft = m_RTP_Info.nal.end - m_RTP_Info.start ;  
        int maxSize = m_MAXRTPPACKSIZE - 12 ;   // sizeof(basic rtp header) == 12 bytes  
        if ( m_RTP_Info.FU_flag )  
            maxSize -= 2 ;  
  
        if ( bytesLeft > maxSize )  
        {  
            m_RTP_Info.end = m_RTP_Info.start + maxSize ;   // limit RTP packetsize to 1472 bytes  
        }  
        else  
        {  
            m_RTP_Info.end = m_RTP_Info.start + bytesLeft ;  
        }  
  
        if ( m_RTP_Info.FU_flag )  
        {   // multiple packet NAL slice  
            if ( m_RTP_Info.end == m_RTP_Info.nal.end )  
            {  
                m_RTP_Info.e_bit = 1 ;  
            }  
        }  
  
        m_RTP_Info.rtp_hdr.m =  m_RTP_Info.nal.eoFrame ? 1 : 0 ; // should be set at EofFrame  
        if ( m_RTP_Info.FU_flag && !m_RTP_Info.e_bit )  
        {  
            m_RTP_Info.rtp_hdr.m = 0 ;  
        }  
  
        m_RTP_Info.rtp_hdr.seq++ ;  
  
        unsigned char *cp = m_RTP_Info.start ;  
        cp -= ( m_RTP_Info.FU_flag ? 14 : 12 ) ;  
        m_RTP_Info.pRTP = cp ;  
          
        unsigned char *cp2 = (unsigned char *)&m_RTP_Info.rtp_hdr ;  
        cp[0] = cp2[0] ;  
        cp[1] = cp2[1] ;  
  
        cp[2] = ( m_RTP_Info.rtp_hdr.seq >> 8 ) & 0xff ;  
        cp[3] = m_RTP_Info.rtp_hdr.seq & 0xff ;  
  
        cp[4] = ( m_RTP_Info.rtp_hdr.ts >> 24 ) & 0xff ;  
        cp[5] = ( m_RTP_Info.rtp_hdr.ts >> 16 ) & 0xff ;  
        cp[6] = ( m_RTP_Info.rtp_hdr.ts >>  8 ) & 0xff ;  
        cp[7] = m_RTP_Info.rtp_hdr.ts & 0xff ;  
  
        cp[8] =  ( m_RTP_Info.rtp_hdr.ssrc >> 24 ) & 0xff ;  
        cp[9] =  ( m_RTP_Info.rtp_hdr.ssrc >> 16 ) & 0xff ;  
        cp[10] = ( m_RTP_Info.rtp_hdr.ssrc >>  8 ) & 0xff ;  
        cp[11] = m_RTP_Info.rtp_hdr.ssrc & 0xff ;  
        m_RTP_Info.hdr_len = 12 ;  
        /*! 
        * /n The FU indicator octet has the following format: 
        * /n 
        * /n      +---------------+ 
        * /n MSB  |0|1|2|3|4|5|6|7|  LSB 
        * /n      +-+-+-+-+-+-+-+-+ 
        * /n      |F|NRI|  Type   | 
        * /n      +---------------+ 
        * /n 
        * /n The FU header has the following format: 
        * /n 
        * /n      +---------------+ 
        * /n      |0|1|2|3|4|5|6|7| 
        * /n      +-+-+-+-+-+-+-+-+ 
        * /n      |S|E|R|  Type   | 
        * /n      +---------------+ 
        */  
        if ( m_RTP_Info.FU_flag )  
        {  
            // FU indicator  F|NRI|Type  
            cp[12] = ( m_RTP_Info.nal.type & 0xe0 ) | 28 ;  //Type is 28 for FU_A  
            //FU header     S|E|R|Type  
            cp[13] = ( m_RTP_Info.s_bit << 7 ) | ( m_RTP_Info.e_bit << 6 ) | ( m_RTP_Info.nal.type & 0x1f ) ; //R = 0, must be ignored by receiver  
  
            m_RTP_Info.s_bit = m_RTP_Info.e_bit= 0 ;  
            m_RTP_Info.hdr_len = 14 ;  
        }  
        m_RTP_Info.start = &cp[m_RTP_Info.hdr_len] ;    // new start of payload  
  
        *pPacketSize = m_RTP_Info.hdr_len + ( m_RTP_Info.end - m_RTP_Info.start ) ;  
        return m_RTP_Info.pRTP ;  
    }  
  
private:  
    unsigned int StartCode( unsigned char *cp )  
    {  
        unsigned int d32 ;  
        d32 = cp[3] ;  
        d32 <<= 8 ;  
        d32 |= cp[2] ;  
        d32 <<= 8 ;  
        d32 |= cp[1] ;  
        d32 <<= 8 ;  
        d32 |= cp[0] ;  
        return d32 ;  
    }  
  
private:  
    RTP_INFO m_RTP_Info ;  
    bool m_bBeginNAL ;  
    unsigned short m_MAXRTPPACKSIZE ;  
};  
  
// class CH264_RTP_PACK end  
//  
// class CH264_RTP_UNPACK start  
  
class CH264_RTP_UNPACK  
{  
  
#define RTP_VERSION 2  
#define BUF_SIZE (1024 * 500)  
  
    typedef struct   
    {  
        //LITTLE_ENDIAN  
        unsigned short   cc:4;      /* CSRC count                 */  
        unsigned short   x:1;       /* header extension flag      */  
        unsigned short   p:1;       /* padding flag               */  
        unsigned short   v:2;       /* packet type                */  
        unsigned short   pt:7;      /* payload type               */  
        unsigned short   m:1;       /* marker bit                 */  
  
        unsigned short    seq;      /* sequence number            */  
        unsigned long     ts;       /* timestamp                  */  
        unsigned long     ssrc;     /* synchronization source     */  
    } rtp_hdr_t;  
public:  
  
    CH264_RTP_UNPACK ( HRESULT &hr, unsigned char H264PAYLOADTYPE = 96 )  
        : m_bSPSFound(false)  
        , m_bWaitKeyFrame(true)  
        , m_bPrevFrameEnd(false)  
        , m_bAssemblingFrame(false)  
        , m_wSeq(1234)  
        , m_ssrc(0)  
    {  
        m_pBuf = new BYTE[BUF_SIZE] ;  
        if ( m_pBuf == NULL )  
        {  
            hr = E_OUTOFMEMORY ;  
            return ;  
        }  
  
        m_H264PAYLOADTYPE = H264PAYLOADTYPE ;  
        m_pEnd = m_pBuf + BUF_SIZE ;  
        m_pStart = m_pBuf ;  
        m_dwSize = 0 ;  
        hr = S_OK ;  
    }  
  
    ~CH264_RTP_UNPACK(void)  
    {  
        delete [] m_pBuf ;  
    }  
  
    //pBuf为H264 RTP视频数据包,nSize为RTP视频数据包字节长度,outSize为输出视频数据帧字节长度。  
    //返回值为指向视频数据帧的指针。输入数据可能被破坏。  
    BYTE* Parse_RTP_Packet ( BYTE *pBuf, unsigned short nSize, int *outSize )  
    {  
        if ( nSize <= 12 )  
        {  
            return NULL ;  
        }  
  
        BYTE *cp = (BYTE*)&m_RTP_Header ;  
        cp[0] = pBuf[0] ;  
        cp[1] = pBuf[1] ;  
  
        m_RTP_Header.seq = pBuf[2] ;  
        m_RTP_Header.seq <<= 8 ;  
        m_RTP_Header.seq |= pBuf[3] ;  
  
        m_RTP_Header.ts = pBuf[4] ;  
        m_RTP_Header.ts <<= 8 ;  
        m_RTP_Header.ts |= pBuf[5] ;  
        m_RTP_Header.ts <<= 8 ;  
        m_RTP_Header.ts |= pBuf[6] ;  
        m_RTP_Header.ts <<= 8 ;  
        m_RTP_Header.ts |= pBuf[7] ;  
  
        m_RTP_Header.ssrc = pBuf[8] ;  
        m_RTP_Header.ssrc <<= 8 ;  
        m_RTP_Header.ssrc |= pBuf[9] ;  
        m_RTP_Header.ssrc <<= 8 ;  
        m_RTP_Header.ssrc |= pBuf[10] ;  
        m_RTP_Header.ssrc <<= 8 ;  
        m_RTP_Header.ssrc |= pBuf[11] ;  
  
        BYTE *pPayload = pBuf + 12 ;  
        DWORD PayloadSize = nSize - 12 ;  
  
        // Check the RTP version number (it should be 2):  
        if ( m_RTP_Header.v != RTP_VERSION )  
        {  
            return NULL ;  
        }  
  
        /* 
        // Skip over any CSRC identifiers in the header: 
        if ( m_RTP_Header.cc ) 
        { 
            long cc = m_RTP_Header.cc * 4 ; 
            if ( Size < cc ) 
            { 
                return NULL ; 
            } 
 
            Size -= cc ; 
            p += cc ; 
        } 
 
        // Check for (& ignore) any RTP header extension 
        if ( m_RTP_Header.x ) 
        { 
            if ( Size < 4 ) 
            { 
                return NULL ; 
            } 
 
            Size -= 4 ; 
            p += 2 ; 
            long l = p[0] ; 
            l <<= 8 ; 
            l |= p[1] ; 
            p += 2 ; 
            l *= 4 ; 
            if ( Size < l ) ; 
            { 
                return NULL ; 
            } 
            Size -= l ; 
            p += l ; 
        } 
         
        // Discard any padding bytes: 
        if ( m_RTP_Header.p ) 
        { 
            if ( Size == 0 ) 
            { 
                return NULL ; 
            } 
            long Padding = p[Size-1] ; 
            if ( Size < Padding ) 
            { 
                return NULL ; 
            } 
            Size -= Padding ; 
        }*/  
  
        // Check the Payload Type.  
        if ( m_RTP_Header.pt != m_H264PAYLOADTYPE )  
        {  
            return NULL ;  
        }  
  
        int PayloadType = pPayload[0] & 0x1f ;  
        int NALType = PayloadType ;  
        if ( NALType == 28 ) // FU_A  
        {  
            if ( PayloadSize < 2 )  
            {  
                return NULL ;  
            }  
  
            NALType = pPayload[1] & 0x1f ;  
        }  
  
        if ( m_ssrc != m_RTP_Header.ssrc )  
        {  
            m_ssrc = m_RTP_Header.ssrc ;  
            SetLostPacket () ;  
        }  
      
        if ( NALType == 0x07 ) // SPS  
        {  
            m_bSPSFound = true ;  
        }  
  
        if ( !m_bSPSFound )  
        {  
            return NULL ;  
        }  
  
        if ( NALType == 0x07 || NALType == 0x08 ) // SPS PPS  
        {  
            m_wSeq = m_RTP_Header.seq ;  
            m_bPrevFrameEnd = true ;  
  
            pPayload -= 4 ;  
            *((DWORD*)(pPayload)) = 0x01000000 ;  
            *outSize = PayloadSize + 4 ;  
            return pPayload ;  
        }  
  
        if ( m_bWaitKeyFrame )  
        {  
            if ( m_RTP_Header.m ) // frame end  
            {  
                m_bPrevFrameEnd = true ;  
                if ( !m_bAssemblingFrame )  
                {  
                    m_wSeq = m_RTP_Header.seq ;  
                    return NULL ;  
                }  
            }  
  
            if ( !m_bPrevFrameEnd )  
            {  
                m_wSeq = m_RTP_Header.seq ;  
                return NULL ;  
            }  
            else  
            {  
                if ( NALType != 0x05 ) // KEY FRAME  
                {  
                    m_wSeq = m_RTP_Header.seq ;  
                    m_bPrevFrameEnd = false ;  
                    return NULL ;  
                }  
            }  
        }  
  
  
///  
              
        if ( m_RTP_Header.seq != (WORD)( m_wSeq + 1 ) ) // lost packet  
        {  
            m_wSeq = m_RTP_Header.seq ;  
            SetLostPacket () ;            
            return NULL ;  
        }  
        else  
        {  
            // 码流正常  
  
            m_wSeq = m_RTP_Header.seq ;  
            m_bAssemblingFrame = true ;  
              
            if ( PayloadType != 28 ) // whole NAL  
            {  
                *((DWORD*)(m_pStart)) = 0x01000000 ;  
                m_pStart += 4 ;  
                m_dwSize += 4 ;  
            }  
            else // FU_A  
            {  
                if ( pPayload[1] & 0x80 ) // FU_A start  
                {  
                    *((DWORD*)(m_pStart)) = 0x01000000 ;  
                    m_pStart += 4 ;  
                    m_dwSize += 4 ;  
  
                    pPayload[1] = ( pPayload[0] & 0xE0 ) | NALType ;  
                      
                    pPayload += 1 ;  
                    PayloadSize -= 1 ;  
                }  
                else  
                {  
                    pPayload += 2 ;  
                    PayloadSize -= 2 ;  
                }  
            }  
  
            if ( m_pStart + PayloadSize < m_pEnd )  
            {  
                CopyMemory ( m_pStart, pPayload, PayloadSize ) ;  
                m_dwSize += PayloadSize ;  
                m_pStart += PayloadSize ;  
            }  
            else // memory overflow  
            {  
                SetLostPacket () ;  
                return NULL ;  
            }  
  
            if ( m_RTP_Header.m ) // frame end  
            {  
                *outSize = m_dwSize ;  
  
                m_pStart = m_pBuf ;  
                m_dwSize = 0 ;  
  
                if ( NALType == 0x05 ) // KEY FRAME  
                {  
                    m_bWaitKeyFrame = false ;  
                }  
                return m_pBuf ;  
            }  
            else  
            {  
                return NULL ;  
            }  
        }  
    }  
  
    void SetLostPacket()  
    {  
        m_bSPSFound = false ;  
        m_bWaitKeyFrame = true ;  
        m_bPrevFrameEnd = false ;  
        m_bAssemblingFrame = false ;  
        m_pStart = m_pBuf ;  
        m_dwSize = 0 ;  
    }  
  
private:  
    rtp_hdr_t m_RTP_Header ;  
  
    BYTE *m_pBuf ;  
  
    bool m_bSPSFound ;  
    bool m_bWaitKeyFrame ;  
    bool m_bAssemblingFrame ;  
    bool m_bPrevFrameEnd ;  
    BYTE *m_pStart ;  
    BYTE *m_pEnd ;  
    DWORD m_dwSize ;  
  
    WORD m_wSeq ;  
  
    BYTE m_H264PAYLOADTYPE ;  
    DWORD m_ssrc ;  
};  
  
// class CH264_RTP_UNPACK end  

四、推拉流测试

另一个博主封装了一个推拉流的demo,可以移植到项目中,对h264,aac,感谢博主的热心分享。
他用FFmpeg去对一个事先准备好的mp4文件,读取流,然后通过RTSP协议,推流到一个文件夹,然后写了个客户端,rtsp,拉流,播放。
如果我么要移植到ipc项目中,这里需要修改一下,将soc采集到的视频流,放到rtp包里,去掉FFmpeg解码,也不需要移植FFmpeg。

原文链接:https://blog.csdn.net/weixin_43147845/article/details/140923649

在这里插入图片描述
地址:https://github.com/BreakingY/simple-rtsp-client

1、准备

simple-rtsp-server依赖ffmpeg,版本要求>=4.x。支持系统:Linux

依赖安装:

sudo apt-get -y install autoconf automake build-essential libass-dev libfreetype6-dev libsdl2-dev libtheora-dev libtool libva-dev libvdpau-dev libvorbis-dev libxcb1-dev libxcb-shm0-dev libxcb-xfixes0-dev pkg-config texinfo zlib1g-dev

汇编库:

sudo apt-get install yasm
sudo apt-get install nasm

视频库:

sudo apt-get install libx264-dev
sudo apt-get install libx265-dev

音频库:

sudo apt-get install libfdk-aac-dev
sudo apt-get install libmp3lame-dev
sudo apt-get install libopus-dev

ffmpeg源码下载:

wget https://ffmpeg.org//releases/ffmpeg-4.0.5.tar.bz2

tar xjvf ffmpeg-4.0.5.tar.bz2

cd ffmpeg-4.0.5

编译安装:

./configure --prefix=/usr/local --enable-libx264 --disable-x86asm --enable-nonfree --enable-libfdk-aac  --enable-shared --enable-gpl --enable-libmp3lame --enable-libopus  --extra-cflags=-I/usr/local/include --extra-ldflags=-L/usr/local/lib
 
make
 
make install

2、simple-rtsp-server下载编译
下载后

cd simple-rtsp-server
 
mkdir build
 
cd build
 
cmake ..
 
make -j

3、运行

cp -r ../mp4path .
 
./rtsp_server 0 (0-不鉴权;1-鉴权)

4、拉流测试
项目中mp4path自带了测试文件,后面把想回放的视频放到mp4path中即可

TCP拉流:

ffmpeg -rtsp_transport tcp -i "rtsp://192.168.10.17:8554/test_h264_aac.mp4" -vcodec copy -acodec copy  test_h264_aac_tcp.mp4

UDP拉流:

ffmpeg -i "rtsp://192.168.10.17:8554/test_h264_aac.mp4" -vcodec copy -acodec copy  test_h264_aac_udp.mp4

也可通过VLC直接播放,点击媒体->打开网络串流,输入rtsp地址即可。默认是udp拉流,要使用TCP需要打开工具->偏好设置->输入/编解码器,拉到最下方,选择“RTP over RTSP(TCP)”

他也写了一个客户端拉流,不用上面测试命令FFmpeg

二、RTSP Client实战项目

地址:https://github.com/BreakingY/simple-rtsp-client

支持RTP OVER UDP、RTP OVER TCP,支持H264/H265、AAC/PCMA、支持鉴权。

不需要任何依赖。

1、下载后编译

mkdir build
 
cd build
 
cmake ..
 
make -j

2、测试
./rtsp_client rtsp_url

客户端会把收到的音视频写入文件,H264/H265写入到test_out.h26x,AAC写入到test_out.aac,PCMA写入到test_out.pcma。

另一个比较厉害的,比较全
https://github.com/ireader/media-server

;