Bootstrap

Java 八股文-高级篇(全网最全)

1.Java 中 IO 流分为几种?

按照流的流向分,可以分为输入流和输出流;

按照操作单元划分,可以划分为字节流和字符流;

按照流的角色划分为节点流和处理流。

Java Io流共涉及40多个类,这些类看上去很杂乱,但实际上很有规则,而且彼此之间存在非常紧密的联系, Java I0流的40多个类都是从如下4个抽象类基类中派生出来的。

InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。

OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。

按操作方式分类结构图:

2.BIO、NIO、AIO 有什么区别?

1)BIO

在服务端启动一个ServerSocket,然后在客户端启动Socket来对服务端进行通信,默认情况下服务端需要对每个请求建立一堆线程等待请求,而客户端发送请求后,先咨询服务端是否有线程相应,如果没有则会一直等待或者遭到拒绝请求,如果有的话,客户端会线程会等待请求结束后才继续执行。

简单来说,用户进程在发起一个IO操作以后,必须等待IO操作的完成,只有当真正完成了IO操作以后,用户进程才能运行,BIO方式适用于连接数目比较小且固定的架构。

2)NIO

NIO基于Reactor,当socket有流可读或可写入socket时,操作系统会相应的通知引用程序进行处理,应用再将流读取到缓冲区或写入操作系统。 当一个连接创建后,不需要对应一个线程,这个连接会被注册到多路复用器上面,所以所有的连接只需要一个线程就可以搞定,当这个线程中的多路复用器进行轮询的时候,发现连接上有请求的话,才开启一个线程进行处理。

简单来说,用户进程发起一个IO操作以后边可返回做其它事情,但是用户进程需要时不时的询问IO操作是否就绪(引入不必要的CPU资源浪费)

NIO方式适用于连接数目多且连接比较短的架构。

BIO的每个连接一个单独的线程,而NIO则是每个连接共用一个线程。

3)AIO

当有流可读取时,操作系统会将可读的流传入read方法的缓冲区,并通知应用程序;对于写操作而言,当操作系统将write方法传递的流写入完毕时,操作系统主动通知应用程序。read/write方法都是异步的,完成后会主动调用回调函数。 AIO是一个有效请求一个线程。

简单来说,用户进程只需要发起一个IO操作然后立即返回,等IO操作真正的完成以后,应用程序会得到IO操作完成的通知。不需要进行实际的IO读写操作,因为真正的IO读取或者写入操作已经由内核完成了。

AIO方式使用于连接数目多且连接比较长的架构。

篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题

需要全套面试笔记【点击此处即可】免费获取

3.Files的常用方法都有哪些?

Files. exists():检测文件路径是否存在。

Files. createFile():创建文件。

Files. createDirectory():创建文件夹。

Files. delete():删除一个文件或目录。

Files. copy():复制文件。

Files. move():移动文件。

Files. size():查看文件个数。

Files. read():读取文件。

Files. write():写入文件。

4.Java 容器都有哪些?

如图所示

5.Collection 和 Collections 有什么区别?

java.util.Collection 是一个集合接口(集合类的一个顶级接口)。它提供了对集合对象进行基本操作的通用接口方法。Collection接口在Java 类库中有很多具体的实现。Collection接口的意义是为各种具体的集合提供了最大化的统一操作方式,其直接继承接口有List与Set。

Collections则是集合类的一个工具类/帮助类,其中提供了一系列静态方法,用于对集合中元素进行排序、搜索以及线程安全等各种操作。

6.List、Set、Map 之间的区别是什么?

7.说一下 HashSet 的实现原理?

(1)基于HashMap实现的,默认构造函数是构建一个初始容量为16,负载因子为0.75 的HashMap。封装了一个 HashMap 对象来存储所有的集合元素,所有放入 HashSet 中的集合元素实际上由 HashMap 的 key 来保存,而 HashMap 的 value 则存储了一个 PRESENT,它是一个静态的 Object 对象。

(2)当我们试图把某个类的对象当成 HashMap的 key,或试图将这个类的对象放入 HashSet 中保存时,重写该类的equals(Object obj)方法和 hashCode() 方法很重要,而且这两个方法的返回值必须保持一致:当该类的两个的 hashCode() 返回值相同时,它们通过 equals() 方法比较也应该返回 true。通常来说,所有参与计算 hashCode() 返回值的关键属性,都应该用于作为 equals() 比较的标准。

(3)HashSet的其他操作都是基于HashMap的。

8.如何决定使用 HashMap 还是 TreeMap?

对于在Map中插入、删除和定位元素这类操作,HashMap是最好的选择。然而,假如你需要对一个有序的key集合进行遍历,TreeMap是更好的选择。基于你的collection的大小,也许向HashMap中添加元素会更快,将map换为TreeMap进行有序key的遍历。

9.如何实现数组和 List 之间的转换?

List转数组:toArray(arraylist.size()方法

数组转List:Arrays的asList(a)方法

10.哪些集合类是线程安全的?

在集合框架中,有些类是线程安全的,这些都是jdk1.1中的出现的。在jdk1.2之后,就出现许许多多非线程安全的类。 下面是这些线程安全的同步的类:

vector:就比arraylist多了个同步化机制(线程安全),因为效率较低,现在已经不太建议使用。在web应用中,特别是前台页面,往往效率(页面响应速度)是优先考虑的。

statck:堆栈类,先进后出

hashtable:就比hashmap多了个线程安全

enumeration:枚举,相当于迭代器

StringBuffer也是线程安全的,(StringBuilder 不是线程安全的)

除了这些之外,其他的都是非线程安全的类和接口。

线程安全的类其方法是同步的,每次只能一个访问。是重量级对象,效率较低。

11. Iterator 怎么使用?有什么特点?

1.Iterator在遍历元素过程中,有线程修改集合元素会有ConcurrentModificationEception异常

2.Iterator本身不具有装载数据功能,需依附Collection对象使用

3.next()是用游标指向的方式返回下一个元素的

12.Iterator 和 ListIterator 有什么区别?

我们需要知道的第一个则是:

(1)所属关系,ListIterator是一个Iterator的子类型。

(2)局限:只能应用于各种List类的访问。

(3)优势:Iterator只能向前移动,而ListIterator可以双向移动。

还可以产生相对于迭代器在列表中指向的当前位置的前一个和后一个元素的索引

nextIndex()、previousIndex()方法。

还可以通过set()方法替换它访问过的最后一个元素。

还可以通过调用listIterator()方法产生一个指向List开始处的ListIterator,当然也可以有参数,即指向索引为参数处的ListIterator。

(4)ListIterator 有 add() 方法,可以向 List 中添加对象,而 Iterator 不能

13.创建线程有哪几种方式?

1.继承Thread类实现多线程

2.覆写Runnable()接口实现多线程,而后同样覆写run().推荐此方式

3.覆写Callable接口实现多线程(JDK1.5)

4.通过线程池启动多线程

14.说一下 runnable 和 callable 有什么区别?

Runnable应该是比较熟悉的接口,它只有一个run()函数,用于将耗时操作写在其中,该函数没有返回值,不能将结果返回给客户程序。然后使用某个线程去执行runnable即可实现多线程,Thread类在调用start()函数后就是执行的是Runnable的run()函数。

Callable与Runnable的功能大致相似,Callable中有一个call()函数,但是call()函数有返回值。

主要区别:

Runnable 接口 run 方法无返回值;Callable 接口 call 方法有返回值,支持泛型

Runnable 接口 run 方法只能抛出运行时异常,且无法捕获处理;Callable 接口 call 方法允许抛出异常,可以获取异常信息

15.sleep() 和 wait() 有什么区别?

sleep方法:

  属于Thread类中的方法;会导致程序暂停执行指定的时间,让出cpu该其他线程,但是他的监控状态依然保持着,当指定时间到了之后,又会自动恢复运行状态;在调用sleep方法的过程中,线程不会释放对象锁。(只会让出CPU,不会导致锁行为的改变)

wait方法:

  属于Object类中的方法;在调用wait方法的时候,线程会放弃对象锁,进入等待此对象的等待锁定池,只有针对此对象调用notify方法后本线程才进入对象锁定池准备。获取对象锁进入运行状态。(不仅让出CPU,还释放已经占有的同步资源锁)

16.notify()和 notifyAll()有什么区别?

notify():

唤醒一个处于等待状态的线程,

注意的是在调用此方法的时候,

并不能确切的唤醒某一个等待状态的线程,

而是由JVM确定唤醒哪个线程,而且不是按优先级。

notifyAll():

唤醒所有处入等待状态的线程;

并可以理解为把他们排进一个队列;

只不过只有头部的线程获得了锁,才能运行;

注意!!并不是给所有唤醒线程一个对象的锁,而是让它们竞争,

当其中一个线程运行完就开始运行下一个已经被唤醒的线程,因为锁已经转移了。

17.线程的 run()和 start()有什么区别?

run()方法:

  是在主线程中执行方法,和调用普通方法一样;(按顺序执行,同步执行)

start()方法:

  是创建了新的线程,在新的线程中执行;(异步执行)

18.线程池中 submit()和 execute()方法有什么区别?

execute() 参数 Runnable ;submit() 参数 (Runnable) 或 (Runnable 和 结果 T) 或 (Callable)

execute() 没有返回值;而 submit() 有返回值

submit() 的返回值 Future 调用get方法时,可以捕获处理异常

3.51在 java 程序中怎么保证多线程的运行安全?

线程的安全性问题体现在:

原子性:一个或者多个操作在 CPU 执行的过程中不被中断的特性

可见性:一个线程对共享变量的修改,另外一个线程能够立刻看到

有序性:程序执行的顺序按照代码的先后顺序执行

导致原因:

缓存导致的可见性问题

线程切换带来的原子性问题

编译优化带来的有序性问题

解决办法:

JDK Atomic开头的原子类、synchronized、LOCK,可以解决原子性问题

synchronized、volatile、LOCK,可以解决可见性问题

Happens-Before 规则可以解决有序性问题

Happens-Before 规则如下:

程序次序规则:在一个线程内,按照程序控制流顺序,书写在前面的操作先行发生于书写在后面的操作

管程锁定规则:一个unlock操作先行发生于后面对同一个锁的lock操作

volatile变量规则:对一个volatile变量的写操作先行发生于后面对这个变量的读操作

线程启动规则:Thread对象的start()方法先行发生于此线程的每一个动作

线程终止规则:线程中的所有操作都先行发生于对此线程的终止检测

线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生

对象终结规则:一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始

3.52什么是死锁?

所谓死锁,是指多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。 因此我们举个例子来描述,如果此时有一个线程A,按照先锁a再获得锁b的的顺序获得锁,而在此同时又有另外一个线程B,按照先锁b再锁a的顺序获得锁。如下图所示:

3.53怎么防止死锁?

预防死锁:

资源一次性分配:一次性分配所有资源,这样就不会再有请求了:(破坏请求条件)

只要有一个资源得不到分配,也不给这个进程分配其他的资源:(破坏请保持条件)

可剥夺资源:即当某进程获得了部分资源,但得不到其它资源,则释放已占有的资源(破坏不可剥夺条件)

资源有序分配法:系统给每类资源赋予一个编号,每一个进程按编号递增的顺序请求资源,释放则相反(破坏环路等待条件)

1、以确定的顺序获得锁

如果必须获取多个锁,那么在设计的时候需要充分考虑不同线程之前获得锁的顺序。按照上面的例子,两个线程获得锁的时序图如下:

那么死锁就永远不会发生。 针对两个特定的锁,开发者可以尝试按照锁对象的hashCode值大小的顺序,分别获得两个锁,这样锁总是会以特定的顺序获得锁,那么死锁也不会发生。问题变得更加复杂一些,如果此时有多个线程,都在竞争不同的锁,简单按照锁对象的hashCode进行排序(单纯按照hashCode顺序排序会出现“环路等待”),可能就无法满足要求了,这个时候开发者可以使用银行家算法,所有的锁都按照特定的顺序获取,同样可以防止死锁的发生,该算法在这里就不再赘述了,有兴趣的可以自行了解一下。

2、超时放弃

当使用synchronized关键词提供的内置锁时,只要线程没有获得锁,那么就会永远等待下去,然而Lock接口提供了boolean tryLock(long time, TimeUnit unit) throws InterruptedException方法,该方法可以按照固定时长等待锁,因此线程可以在获取锁超时以后,主动释放之前已经获得的所有的锁。通过这种方式,也可以很有效地避免死锁。 还是按照之前的例子,时序图如下:

避免死锁:

预防死锁的几种策略,会严重地损害系统性能。因此在避免死锁时,要施加较弱的限制,从而获得 较满意的系统性能。由于在避免死锁的策略中,允许进程动态地申请资源。因而,系统在进行资源分配之前预先计算资源分配的安全性。若此次分配不会导致系统进入不安全的状态,则将资源分配给进程;否则,进程等待。其中最具有代表性的避免死锁算法是银行家算法。

银行家算法:首先需要定义状态和安全状态的概念。系统的状态是当前给进程分配的资源情况。因此,状态包含两个向量Resource(系统中每种资源的总量)和Available(未分配给进程的每种资源的总量)及两个矩阵Claim(表示进程对资源的需求)和Allocation(表示当前分配给进程的资源)。安全状态是指至少有一个资源分配序列不会导致死锁。当进程请求一组资源时,假设同意该请求,从而改变了系统的状态,然后确定其结果是否还处于安全状态。如果是,同意这个请求;如果不是,阻塞该进程知道同意该请求后系统状态仍然是安全的。

3.54 synchronized 和 volatile 的区别是什么?

1)volatile比synchronized更轻量级。

2)volatile没有synchronized使用的广泛。

3)volatile不需要加锁,比synchronized更轻量级,不会阻塞线程。

4)从内存可见性角度看,volatile读相当于加锁,volatile写相当于解锁。

5)synchronized既能保证可见性,又能保证原子性,而volatile只能保证可见性,无法保证原子性。

6)volatile本身不保证获取和设置操作的原子性,仅仅保持修改的可见性。但是java的内存模型保证声明为volatile的long和double变量的get和set操作是原子的。

3.55synchronized 和 Lock 有什么区别?

3.56 synchronized 和 ReentrantLock 区别是什么?

基本意义:Synchronized是Java语言的关键字,因此Synchronized的锁是原生语法层面的互斥,需要JVM来实现。具体是通过对象内部的一个叫做监视器锁(monitor)来实现的。ReentrantLock,字面意思可重入锁,它是JDK1.5之后提供的API层面的互斥锁,锁的功能主要由2个方法完成,即lock()和unlock()。

易用性:Synchronized的使用比较方便简洁,由编译器去保证锁的加锁和释放,而ReentrantLock需要手动写代码来加锁和释放锁。
注意:为避免忘记手工释放锁而造成了死锁,最好在finally中声明释放锁。

灵活度:ReentrantLock要优于Synchronized,可以灵活控制在哪个位置加锁和解锁。

性能区别

我们平时写代码的时候用到Java最多的锁是Synchronized,单例模式中看到的锁也是Synchronized。这是为什么呢?除了Synchronized使用方面一些,其实和ReentrantLock对比,性能也丝毫不逊色,这里面说的当然是JDK1.5以后的版本了。

JDK1.6以前的版本没有优化,这时和ReentrantLock比肯定差很多。优化以后的Synchronized引入了包括偏向锁,轻量级锁等,这样就和ReentrantLock性能差不多了。

3.57什么是反射?

Java 反射机制是在运行状态中,对于任意一个类,都能够获得这个类的所有属性和方法,对于任意一个对象都能够调用它的任意一个属性和方法。这种在运行时动态的获取信息以及动态调用对象的方法的功能称为Java 的反射机制。

Class 类与java.lang.reflect 类库一起对反射的概念进行了支持,该类库包含了Field,Method,Constructor类(每个类都实现了Member 接口)。这些类型的对象时由JVM 在运行时创建的,用以表示未知类里对应的成员。

这样就可以使用Constructor 创建新的对象,用get() 和set() 方法读取和修改与Field 对象关联的字段,用invoke() 方法调用与Method 对象关联的方法。另外,还可以调用getFields() getMethods() 和 getConstructors() 等很便利的方法,以返回表示字段,方法,以及构造器的对象的数组。这样匿名对象的信息就能在运行时被完全确定下来,而在编译时不需要知道任何事情。

3.58动态代理是什么?有哪些应用?

动态代理是运行时动态生成代理类。 动态代理的应用有 spring aop、hibernate 数据查询、测试框架的后端 mock、rpc,Java注解对象获取等。

3.59深拷贝和浅拷贝区别是什么?

浅拷贝:创建一个新对象,然后将当前对象的非静态字段复制到该新对象,如果字段是值类型的,那么对该字段执行复制;如果该字段是引用类型的话,则复制引用但不复制引用的对象。因此,原始对象及其副本引用同一个对象。

深拷贝:创建一个新对象,然后将当前对象的非静态字段复制到该新对象,无论该字段是值类型的还是引用类型,都复制独立的一份。当你修改其中一个对象的任何内容时,都不会影响另一个对象的内容。

3.60throw 和 throws 的区别?

throw:

(1)throw 语句用在方法体内,表示抛出异常,由方法体内的语句处理。

(2)throw 是具体向外抛出异常的动作,所以它抛出的是一个异常实例,执行 throw 一定是抛出了某种异常。

throws:

(1)throws 语句是用在方法声明后面,表示如果抛出异常,由该方法的调用者来进行异常的处理。

(2)throws 主要是声明这个方法会抛出某种类型的异常,让它的使用者要知道需要捕获的异常的类型。

(3)throws 表示出现异常的一种可能性,并不一定会发生这种异常。

3.61final、finally、finalize 有什么区别?

1、final

Final可以用于成员变量(包括方法参数),方法、类。

Final成员

 作为变量

变量一旦被初始化便不可改变(对于基本类型,指的是值不变;对于对象类型,指的是引用不变),初始化只可能在两个地方:定义处和构造函数。

作为方法参数

对于基本类型,定义成final参数没有什么意义,因为基本类型就是传值,不会影响调用语句中的变量;对于对象类型,在方法中如果参数确认不需要改变时,定义成final参数可以防止方法中无意的修改而影响到调用方法。

Final方法

不可覆写

编译器将对此方法的调用转化成行内(inline)调用,即直接把方法主体插入到调用处(方法主体内容过多的时候反而会影响效率)

Final类

不可继承

2、finally

异常处理关键字,finally中的主体总会执行,不管异常发生是否。通常放在try…catch的后面构造最终执行代码块,这就意味着程序无论正常执行还是发生异常,这里的代码只要JVM不关闭都能执行,可以将释放外部资源的代码写在finally块中。

 篇幅限制下面就只能给大家展示小册部分内容了。整理了一份核心面试笔记包括了:Java面试、Spring、JVM、MyBatis、Redis、MySQL、并发编程、微服务、Linux、Springboot、SpringCloud、MQ、Kafka 面试专题

需要全套面试笔记【点击此处即可】免费获取

2.1、当try中有return时执行顺序

return语句并不是函数的最终出口,如果有finally语句,这在return之后还会执行finally(return的值会暂存在栈里面,等待finally执行后再返回)

2.2、return和异常获取语句的位置

3、finalize

类的Finalize方法,可以告诉垃圾回收器应该执行的操作,该方法从Object类继承而来。在从堆中永久删除对象之前,垃圾回收器调用该对象的Finalize方法。注意,无法确切地保证垃圾回收器何时调用该方法,也无法保证调用不同对象的方法的顺序。即使一个对象包含另一个对象的引用,或者在释放一个对象很久以前就释放了另一个对象,也可能会以任意的顺序调用这两个对象的Finalize方法。如果必须保证采用特定的顺序,则必须提供自己的特有清理方法。

3.64 Java中CyclicBarrier 和 CountDownLatch有什么不同?

1、CyclicBarrier的某个线程运行到某个点后停止运行,直到所有线程都达到同一个点,所有线程才会重新运行;

 CountDownLatch线程运行到某个点后,计数值-1,该线程继续运行,直到计数值为0,则停止运行;

2、CyclicBarrier只能唤醒一个任务;CountDownLatch可以唤醒多个任务;

3、CyccliBarrier可以重用,CountDownLatch不可重用,当计数值为0时,CountDownLatch就不可再用了。

3.65为什么说 Synchronized 是一个悲观锁?乐观锁的实现原理 又是什么?什么是 CAS,它有什么特性?

Synchronized显然是一个悲观锁,因为它的并发策略是悲观的:不管是否会产生竞争,任何的数据操作都必须要加锁、用户态核心态转换、维护锁计数器和检查是否有被阻塞的线程需要被唤醒等操作。

随着硬件指令集的发展,我们可以使用基于冲突检测的乐观并发策略。先进行操作,如果没有其他线程征用数据,那操作就成功了;如果共享数据有征用,产生了冲突,那就再进行其他的补偿措施。这种乐观的并发策略的许多实现不需要线程挂起,所以被称为非阻塞同步。

乐观锁的核心算法是CAS(CompareandSwap,比较并交换),它涉及到三个操作数:内存值、预期值、新值。当且仅当预期值和内存值相等时才将内存值修改为新值。这样处理的逻辑是,首先检查某块内存的值是否跟之前我读取时的一样,如不一样则表示期间此内存值已经被别的线程更改过,舍弃本次操作,否则说明期间没有其他线程对此内存值操作,可以把新值设置给此块内存。

CAS具有原子性,它的原子性由CPU硬件指令实现保证,即使用JNI调用Native方法调用由C++编写的硬件级别指令,JDK中提供了Unsafe类执行这些操作。

3.66 Java中Semaphore是什么?

Java中的Semaphore是一种新的同步类,它是一个计数信号。从概念上讲,从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release()添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore只对可用许可的号码进行计数,并采取相应的行动。信号量常常用于多线程的代码中,比如数据库连接池。

3.67现在有T1、T2、T3三个线程,你怎样保证T2在T1执行完后执行,T3在T2执行完后执行?

在多线程中有多种方法让线程按特定顺序执行,你可以用线程类的join()方法在一个线程中启动另一个线程,另外一个线程完成该线程继续执行。为了确保三个线程的顺序你应该先启动最后一个(T3调用T2,T2调用T1),这样T1就会先完成而T3最后完成。

3.68你如何在Java中获取线程堆栈?

Java虚拟机提供了线程转储(thread dump)的后门,通过这个后门可以把线程堆栈打印出来。通常我们将堆栈信息重定向到一个文件中,便于我们分析,由于信息量太大,很可能超出控制台缓冲区的最大行数限制造成信息丢失。这里介绍一个jdk自带的打印线程堆栈的工具,jstack用于打印出给定的Java进程ID或core file或远程调试服务的Java堆栈信息。

示例:$jstack –l 23561 >> xxx.dump 

命令 : $jstack [option] pid >> 文件  

>>表示输出到文件尾部,实际运行中,往往一次dump的信息,还不足以确认问题,建议产生三次dump信息,如果每次dump都指向同一个问题,我们才确定问题。

3.69提交任务时线程池队列已满会时发会生什么?

这个问题问得很狡猾,许多程序员会认为该任务会阻塞直到线程池队列有空位。但是最大线程数没有满的话,就会新建一个非核心线程去执行该任务。如果核心线程数、阻塞队列、最大线程数都满了的话,就会执行线程池的拒绝策略,如果一个任务不能被调度执行那么ThreadPoolExecutor’s submit()方法将会抛出一个RejectedExecutionException异常

3.70什么是乐观锁和悲观锁?

乐观锁总是认为不会产生并发问题,每次去取数据的时候总认为不会有其他线程对数据进行修改,因此不会上锁,但是在更新时会判断其他线程在这之前有没有对数据进行修改,一般会使用版本号机制或CAS操作实现。

乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。

悲观锁顾名思义,就是很悲观,总是假设最坏的情况,每次取数据时都认为其他线程会修改,所以都会加锁(读锁、写锁、行锁等),当其他线程想要访问数据时,都需要阻塞挂起。可以依靠数据库实现,如行锁、读锁和写锁等,都是在操作之前加锁,在Java中,synchronized的思想也是悲观锁。

第4章 JVM

4.1 JVM内存分哪几个区,每个区的作用是什么? 

java虚拟机主要分为以下几个区:

(1)方法区

  1. 有时候也成为永久代,在该区内很少发生垃圾回收,但是并不代表不发生GC,在这里进行的GC主要是对方法区里的常量池和对类型的卸载
  2. 方法区主要用来存储已被虚拟机加载的类的信息、常量、静态变量和即时编译器编译后的代码等数据。
  3. 该区域是被线程共享的。
  4. 方法区里有一个运行时常量池,用于存放静态编译产生的字面量和符号引用。该常量池具有动态性,也就是说常量并不一定是编译时确定,运行时生成的常量也会存在这个常量池中。

(2)虚拟机栈

  1. 虚拟机栈也就是我们平常所称的栈内存,它为java方法服务,每个方法在执行的时候都会创建一个栈帧,用于存储局部变量表、操作数栈、动态链接和方法出口等信息。
  2. 虚拟机栈是线程私有的,它的生命周期与线程相同。
  3. 局部变量表里存储的是基本数据类型、returnAddress类型(指向一条字节码指令的地址)和对象引用,这个对象引用有可能是指向对象起始地址的一个指针,也有可能是代表对象的句柄或者与对象相关联的位置。局部变量所需的内存空间在编译器间确定
  4. 操作数栈的作用主要用来存储运算结果以及运算的操作数,它不同于局部变量表通过索引来访问,而是压栈和出栈的方式
  5. 每个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程中的动态连接.动态链接就是将常量池中的符号引用在运行期转化为直接引用。

(3)本地方法栈
本地方法栈和虚拟机栈类似,只不过本地方法栈为Native方法服务。

(4)堆

java堆是所有线程所共享的一块内存,在虚拟机启动时创建,几乎所有的对象实例都在这里创建,因此该区域经常发生垃圾回收操作。

(5)程序计数器:

内存空间小,字节码解释器工作时通过改变这个计数值可以选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理和线程恢复等功能都需要依赖这个计数器完成。该内存区域是唯一一个java虚拟机规范没有规定任何OOM情况的区域。

4.2 heap 和stack 有什么区别 

(1)申请方式

stack:由系统自动分配。例如,声明在函数中一个局部变量 int b; 系统自动在栈中为 b 开辟空间

heap:需要程序员自己申请,并指明大小,在 c 中 malloc 函数,对于Java 需要手动 new Object()的形式开辟

(2)申请后系统的响应

stack:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

heap:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

(3)申请大小的限制

stack:栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS 下,栈的大小是 2M(也有的说是 1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示 overflow。因此,能从栈获得的空间较小。

heap:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的, 自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见, 堆获得的空间比较灵活,也比较大。

(4)申请效率的比较

stack:由系统自动分配,速度较快。但程序员是无法控制的。

heap:由 new 分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

(5)heap和stack中的存储内容

stack:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址, 然后是函数的各个参数,在大多数的 C 编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。

当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。

heap:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

4.3 java类加载过程? 

Java类加载需要经历一下几个过程:

(1)加载

加载时类加载的第一个过程,在这个阶段,将完成一下三件事情:

  1. 通过一个类的全限定名获取该类的二进制流。
  2. 将该二进制流中的静态存储结构转化为方法去运行时数据结构。 
  3. 在内存中生成该类的Class对象,作为该类的数据访问入口。

(2)验证

验证的目的是为了确保Class文件的字节流中的信息不回危害到虚拟机.在该阶段主要完成以下四钟验证: 

  1. 文件格式验证:验证字节流是否符合Class文件的规范,如主次版本号是否在当前虚拟机范围内,常量池中的常量是否有不被支持的类型. 
  2. 元数据验证:对字节码描述的信息进行语义分析,如这个类是否有父类,是否集成了不被继承的类等。
  3. 字节码验证:是整个验证过程中最复杂的一个阶段,通过验证数据流和控制流的分析,确定程序语义是否正确,主要针对方法体的验证。如:方法中的类型转换是否正确,跳转指令是否正确等。
  4. 符号引用验证:这个动作在后面的解析过程中发生,主要是为了确保解析动作能正确执行。
  5. 准备

准备阶段是为类的静态变量分配内存并将其初始化为默认值,这些内存都将在方法区中进行分配。准备阶段不分配类中的实例变量的内存,实例变量将会在对象实例化时随着对象一起分配在Java堆中。

(3)解析

该阶段主要完成符号引用到直接引用的转换动作。解析动作并不一定在初始化动作完成之前,也有可能在初始化之后。

(4)初始化

初始化时类加载的最后一步,前面的类加载过程,除了在加载阶段用户应用程序可以通过自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java程序代码。

4.4 什么是类加载器,类加载器有哪些? 

实现通过类的权限定名获取该类的二进制字节流的代码块叫做类加载器。

主要有一下四种类加载器: 

(1)启动类加载器(Bootstrap ClassLoader)用来加载java核心类库,无法被java程序直接引用。

(2)扩展类加载器(extensions class loader):它用来加载 Java 的扩展库。Java 虚拟机的实现会提供一个扩展库目录。该类加载器在此目录里面查找并加载 Java 类。

(3)系统类加载器(system class loader)也叫应用类加载器:它根据 Java 应用的类路径(CLASSPATH)来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoader()来获取它。

(4)用户自定义类加载器,通过继承 java.lang.ClassLoader类的方式实现。

4.5 java中垃圾收集的方法有哪些? 

1引用计数法   应用于:微软的COM/ActionScrip3/Python等

a) 如果对象没有被引用,就会被回收,缺点:需要维护一个引用计算器

2复制算法  年轻代中使用的是Minor GC,这种GC算法采用的是复制算法(Copying)

a) 效率高,缺点:需要内存容量大,比较耗内存

b) 使用在占空间比较小、刷新次数多的新生区

3标记清除  老年代一般是由标记清除或者是标记清除与标记整理的混合实现

a) 效率比较低,会差生碎片。

4标记压缩  老年代一般是由标记清除或者是标记清除与标记整理的混合实现

a) 效率低速度慢,需要移动对象,但不会产生碎片。

5标记清除压缩标记清除-标记压缩的集合,多次GC后才Compact

a) 使用于占空间大刷新次数少的养老区,是3 4的集合体

4.6 如何判断一个对象是否存活?(或者GC对象的判定方法) 

判断一个对象是否存活有两种方法: 

(1)引用计数法

所谓引用计数法就是给每一个对象设置一个引用计数器,每当有一个地方引用这个对象时,就将计数器加一,引用失效时,计数器就减一。当一个对象的引用计数器为零时,说明此对象没有被引用,也就是“死对象”,将会被垃圾回收. 

引用计数法有一个缺陷就是无法解决循环引用问题,也就是说当对象A引用对象B,对象B又引用者对象A,那么此时A,B对象的引用计数器都不为零,也就造成无法完成垃圾回收,所以主流的虚拟机都没有采用这种算法。

(2)可达性算法(引用链法) 

该算法的基本思路就是通过一些被称为引用链(GC Roots)的对象作为起点,从这些节点开始向下搜索,搜索走过的路径被称为(Reference Chain),当一个对象到GC Roots没有任何引用链相连时(即从GC Roots节点到该节点不可达),则证明该对象是不可用的。

在java中可以作为GC Roots的对象有以下几种:虚拟机栈中引用的对象、方法区类静态属性引用的对象、方法区常量池引用的对象、本地方法栈JNI引用的对象。

4.7 简述java内存分配与回收策略以及Minor GC和Major GC(full GC

内存分配:

(1)栈区:栈分为java虚拟机栈和本地方法栈

(2)堆区:堆被所有线程共享区域,在虚拟机启动时创建,唯一目的存放对象实例。堆区是gc的主要区域,通常情况下分为两个区块年轻代和年老代。更细一点年轻代又分为Eden区,主要放新创建对象,From survivor 和 To survivor 保存gc后幸存下的对象,默认情况下各自占比 8:1:1。

(3)方法区:被所有线程共享区域,用于存放已被虚拟机加载的类信息,常量,静态变量等数据。被Java虚拟机描述为堆的一个逻辑部分。习惯是也叫它永久代(permanment generation)

(4)程序计数器:当前线程所执行的行号指示器。通过改变计数器的值来确定下一条指令,比如循环,分支,跳转,异常处理,线程恢复等都是依赖计数器来完成。线程私有的。

回收策略以及Minor GC和Major GC:

(1)对象优先在堆的Eden区分配。

(2)大对象直接进入老年代。

(3)长期存活的对象将直接进入老年代。

当Eden区没有足够的空间进行分配时,虚拟机会执行一次Minor GC.Minor GC通常发生在新生代的Eden区,在这个区的对象生存期短,往往发生GC的频率较高,回收速度比较快;Full Gc/Major GC 发生在老年代,一般情况下,触发老年代GC的时候不会触发Minor GC,但是通过配置,可以在Full GC之前进行一次Minor GC这样可以加快老年代的回收速度。

4.8什么情况下会发生栈内存溢出。

栈是线程私有的,他的生命周期与线程相同,每个方法在执行的时候都会创建一个栈帧,用来存储局部变量表,操作数栈,动态链接,方法出口等信息。局部变量表又包含基本数据类型,对象引用类型

如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常,方法递归调用产生这种结果。

如果Java虚拟机栈可以动态扩展,并且扩展的动作已经尝试过,但是无法申请到足够的内存去完成扩展,或者在新建立线程的时候没有足够的内存去创建对应的虚拟机栈,那么Java虚拟机将抛出一个OutOfMemory 异常。(线程启动过多)

参数 -Xss 去调整JVM栈的大小

4.9 JVM中一次完整的GC流程是怎样的,对象如何晋升到老年代

对象诞生即新生代->eden,在进行minor gc过程中,如果依旧存活,移动到from,变成Survivor,进行标记。当一个对象存活默认超过15次都没有被回收掉,就会进入老年代。

4.10你知道哪几种垃圾收集器,各自的优缺点,重点讲下cms和G1,包括原理,流程,优缺点。

垃圾收集器包括Serial、parNew、ParallelScavenge、SerialOld、ParallelOld、CMS、G1

CMS:

一、初始标记:此时标记需要用户线程停下来;

二、并发标记:此时标记可以和用户线程一起运行;

三、重新标记:此时标记需要用户线程停下来,主要母的是为了对并发标记的垃圾进行审核;

四、并发清除:与用户线程一起与运行进行垃圾清除;

缺点:

     1、CMS收集器对cpu资源非常敏感;

     2、CMS收集器无法清除浮动垃圾;

     3、cms基于标记清除的算法实现的,所以内存碎片会产生过多。

G1收集器:

    1、初始标记:标记GC Root能直接关联的对象,并且修改TAMS的值,让下一阶段的用户进行并发运行是,能够正确运用Region创建新对象,这阶段需要停顿,但停顿时间很短

   2、并发标记:从GC Root开始对堆进行可达性分析,找出存活的对象,这段耗时较长,但可以与用户线程并发执行。

    3、最终标记是为了修正在并发标记阶段因用户程序继续运作导致标记产生变动的那一部分的标记记录,虚拟机将这部分标记记录在线程Remembered Set中,这阶段需要停顿线程,但是可并行执行。

   4、筛选回收:首先对各个Region的回收价值和成本进行排序,根据用户所期待的GC停顿时间来制定回收计划,这个阶段也可以与用户线程并行执行,但由于只回收一部分的Region,时间是用户可控制的,而且停顿用户线程将大幅度提高收集效率。

4.11 JVM内存模型的相关知识了解多少,比如重排序,内存屏障,happen-before,主内存,工作内存。

重排序:jvm虚拟机允许在不影响代码最终结果的情况下,可以乱序执行。

内存屏障:可以阻挡编译器的优化,也可以阻挡处理器的优化

happens-before原则:

1:一个线程的A操作总是在B之前,那多线程的A操作肯定实在B之前。

2:monitor 再加锁的情况下,持有锁的肯定先执行。

3:volatile修饰的情况下,写先于读发生

4:线程启动在一起之前 strat

5:线程死亡在一切之后 end

6:线程操作在一切线程中断之前

7:一个对象构造函数的结束都该对象的finalizer的开始之前

8:传递性,如果A肯定在B之前,B肯定在C之前,那A肯定是在C之前。

主内存:所有线程共享的内存空间

工作内存:每个线程特有的内存空间

4.12简单说说你了解的类加载器,可以打破双亲委派么,怎么打破。

1) 什么是类加载器?

类加载器 就是根据指定全限定名称将class文件加载到JVM内存,转为Class对象。

启动类加载器(Bootstrap ClassLoader):由C++语言实现(针对HotSpot),负责将存放在<JAVA_HOME>\lib目录或-Xbootclasspath参数指定的路径中的类库加载到内存中。

其他类加载器:由Java语言实现,继承自抽象类ClassLoader。如:

扩展类加载器(Extension ClassLoader):负责加载<JAVA_HOME>\lib\ext目录或java.ext.dirs系统变量指定的路径中的所有类库。

应用程序类加载器(Application ClassLoader)。负责加载用户类路径(classpath)上的指定类库,我们可以直接使用这个类加载器。一般情况,如果我们没有自定义类加载器默认就是用这个加载器。

2)双亲委派模型

双亲委派模型工作过程是:

如果一个类加载器收到类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器完成。每个类加载器都是如此,只有当父加载器在自己的搜索范围内找不到指定的类时(即ClassNotFoundException),子加载器才会尝试自己去加载。

双亲委派模型图:

3)为什么需要双亲委派模型?

在这里,先想一下,如果没有双亲委派,那么用户是不是可以自己定义一个java.lang.Object的同名类,java.lang.String的同名类,并把它放到ClassPath中,那么类之间的比较结果及类的唯一性将无法保证,因此,为什么需要双亲委派模型?防止内存中出现多份同样的字节码

4)怎么打破双亲委派模型?

打破双亲委派机制则不仅要继承ClassLoader类,还要重写loadClass和findClass方法。

4.13说说你知道的几种主要的JVM参数

1)堆栈配置相关

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k

-XX:MaxPermSize=16m -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxTenuringThreshold=0

-Xmx3550m: 最大堆大小为3550m。

-Xms3550m: 设置初始堆大小为3550m。

-Xmn2g: 设置年轻代大小为2g。

-Xss128k: 每个线程的堆栈大小为128k。

-XX:MaxPermSize: 设置持久代大小为16m

-XX:NewRatio=4: 设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。

-XX:SurvivorRatio=4: 设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6

-XX:MaxTenuringThreshold=0: 设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。

2)垃圾收集器相关

-XX:+UseParallelGC

-XX:ParallelGCThreads=20

-XX:+UseConcMarkSweepGC

-XX:CMSFullGCsBeforeCompaction=5

-XX:+UseCMSCompactAtFullCollection:

-XX:+UseParallelGC: 选择垃圾收集器为并行收集器。

-XX:ParallelGCThreads=20: 配置并行收集器的线程数

-XX:+UseConcMarkSweepGC: 设置年老代为并发收集。

-XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。

-XX:+UseCMSCompactAtFullCollection: 打开对年老代的压缩。可能会影响性能,但是可以消除碎片

3)辅助信息相关

-XX:+PrintGC

-XX:+PrintGCDetails

-XX:+PrintGC 输出形式:

[GC 118250K->113543K(130112K), 0.0094143 secs] [Full GC 121376K->10414K(130112K), 0.0650971 secs]

-XX:+PrintGCDetails 输出形式:

[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs

4.15垃圾收集算法

jvm的垃圾回收算法有3种,列举如下:

1,标记清除算法。(即把标注的可回收对象直接清理,这样会带来内存碎片化的问题,而且效率不高);

2,标记整理算法。(即把标注的可回收对象清理,在清理的过程中整理内存,解决了内存的碎片化问题);

3,标记复制算法。(把标注的对象清理,没有清理的对象复制到to区,然后互换引用,解决了内存碎片化的问题,但是需要维护对象关系带来一定代价)

4.16调优工具用过哪些

常用调优工具分为两类,jdk自带监控工具:jconsole和jvisualvm,第三方有:MAT(Memory Analyzer Tool)、GChisto。

jconsole,Java Monitoring and Management Console是从java5开始,在JDK中自带的java监控和管理控制台,用于对JVM中内存,线程和类等的监控jvisualvm,jdk自带全能工具,可以分析内存快照、线程快照;监控内存变化、GC变化等。MAT,Memory Analyzer Tool,一个基于Eclipse的内存分析工具,是一个快速、功能丰富的Java heap分析工具,它可以帮助我们查找内存泄漏和减少内存消耗

GChisto,一款专业分析gc日志的工具

4.17你知道哪些JVM性能调优

首先需要注意的是在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。

  对JVM内存的系统级的调优主要的目的是减少GC的频率和Full GC的次数,过多的GC和Full GC是会占用很多的系统资源(主要是CPU),影响系统的吞吐量。特别要关注Full GC,因为它会对整个堆进行整理,导致Full GC一般由于以下几种情况:

旧生代空间不足

  调优时尽量让对象在新生代GC时被回收、让对象在新生代多存活一段时间和不要创建过大的对象及数组避免直接在旧生代创建对象

Pemanet Generation空间不足

  增大Perm Gen空间,避免太多静态对象

  统计得到的GC后晋升到旧生代的平均大小大于旧生代剩余空间

  控制好新生代和旧生代的比例

System.gc()被显示调用

  垃圾回收不要手动触发,尽量依靠JVM自身的机制

调优手段主要是通过控制堆内存的各个部分的比例和GC策略来实现,下面来看看各部分比例不良设置会导致什么后果

1). 新生代设置过小

  一是新生代GC次数非常频繁,增大系统消耗;二是导致大对象直接进入旧生代,占据了旧生代剩余空间,诱发Full GC

2). 新生代设置过大

  一是新生代设置过大会导致旧生代过小(堆总量一定),从而诱发Full GC;二是新生代GC耗时大幅度增加

  一般说来新生代占整个堆1/3比较合适

3). Survivor设置过小

  导致对象从eden直接到达旧生代,降低了在新生代的存活时间

4). Survivor设置过大

  导致eden过小,增加了GC频率

  另外,通过-XX:MaxTenuringThreshold=n来控制新生代存活时间,尽量让对象在新生代被回收

由内存管理和垃圾回收可知新生代和旧生代都有多种GC策略和组合搭配,选择这些策略对于我们这些开发人员是个难题,JVM提供两种较为简单的GC策略的设置方式

1). 吞吐量优先

  JVM以吞吐量为指标,自行选择相应的GC策略及控制新生代与旧生代的大小比例,来达到吞吐量指标。这个值可由-XX:GCTimeRatio=n来设置

2). 暂停时间优先

  JVM以暂停时间为指标,自行选择相应的GC策略及控制新生代与旧生代的大小比例,尽量保证每次GC造成的应用停止时间都在指定的数值范围内完成。这个值可由-XX:MaxGCPauseRatio=n来设置

4.18 Eden和Survivor的比例分配等

默认比例8:1。部分对象都是朝生夕死。 复制算法的基本思想就是将内存分为两块,每次只用其中一块,当这一块内存用完,就将还活着的对象复制到另外一块上面。复制算法不会产生内存碎片。

4.19说一说你对环境变量classpath的理解?如果一个类不在classpath下,为什么会抛出ClassNotFoundException异常,如果在不改变这个类路径的前期下,怎样才能正确加载这个类?

classpath是javac编译器的一个环境变量。它的作用与import、package关键字有关。package的所在位置,就是设置CLASSPATH当编译器面对import packag这个语句时,它先会查找CLASSPATH所指定的目录,并检视子目录java/util是否存在,然后找出名称吻合的已编译文件(.class文件)。如果没有找到就会报错!

动态加载包

  1.  设计模式

5.1你所知道的设计模式有哪些 

Java 中一般认为有 23 种设计模式,我们不需要所有的都会,但是其中常用的几种设计模式应该去掌握。下面列出了所有的设计模式。需要掌握的设计模式我单独列出来了,当然能掌握的越多越好。

总体来说设计模式分为三大类:

创建型模式,共5种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。

结构型模式,共7种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。

行为型模式,共11种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

5.2单例设计模式 

见【第2章 手写代码 2.5】

5.3工厂设计模式(Factory) 

5.3.1什么是工厂设计模式? 

工厂设计模式,顾名思义,就是用来生产对象的,在java中,万物皆对象,这些对象都需要创建,如果创建的时候直接new该对象,就会对该对象耦合严重,假如我们要更换对象,所有new对象的地方都需要修改一遍,这显然违背了软件设计的开闭原则,如果我们使用工厂来生产对象,我们就只和工厂打交道就可以了,彻底和对象解耦,如果要更换对象,直接在工厂里更换该对象即可,达到了与对象解耦的目的;所以说,工厂模式最大的优点就是:解耦

5.3.2简单工厂(Simple Factory) 

定义:

一个工厂方法,依据传入的参数,生成对应的产品对象;
角色:
1、抽象产品
2、具体产品
3、具体工厂
4、产品使用者
使用说明:

先将产品类抽象出来,比如,苹果和梨都属于水果,抽象出来一个水果类Fruit,苹果和梨就是具体的产品类,然后创建一个水果工厂,分别用来创建苹果和梨。代码如下:

水果接口

  1. public interface Fruit {  
  2.     void whatIm();  
  3. }  

苹果类:

  1. public class Apple implements Fruit {  
  2.     @Override  
  3.     public void whatIm() {  
  4.         System.out.println("苹果");  
  5.     }  
  6. }  

类:

  1. public class Pear implements Fruit {  
  2.     @Override  
  3.     public void whatIm() {  
  4.         System.out.println("梨");  
  5.     }  
  6. }  

水果工厂

  1. public class FruitFactory {  
  2.   
  3.     public Fruit createFruit(String type) {  
  4.   
  5.         if (type.equals("apple")) {//生产苹果  
  6.             return new Apple();  
  7.         } else if (type.equals("pear")) {//生产梨  
  8.             return new Pear();  
  9.         }  
  10.   
  11.         return null;  
  12.     }  
  13. }  

使用工厂生产产品:

  1. public class FruitApp {  
  2.   
  3.     public static void main(String[] args) {  
  4.         FruitFactory mFactory = new FruitFactory();  
  5.         Apple apple = (Apple) mFactory.createFruit("apple");//获得苹果  
  6.         Pear pear = (Pear) mFactory.createFruit("pear");//获得梨  
  7.         apple.whatIm();  
  8.         pear.whatIm();  
  9.     }  
  10. }  

以上的这种方式,每当添加一种水果,就必然要修改工厂类,违反了开闭原则;

所以简单工厂只适合于产品对象较少,且产品固定的需求,对于产品变化无常的需求来说显然不合适。

5.3.3工厂方法(Factory Method) 

定义:

将工厂提取成一个接口或抽象类,具体生产什么产品由子类决定;
角色:
1、抽象产品
2、具体产品
3、抽象工厂
4、具体工厂
使用说明:

和上例中一样,产品类抽象出来,这次我们把工厂类也抽象出来,生产什么样的产品由子类来决定。代码如下:
水果接口苹果类和梨类

代码和上例一样

抽象工厂接口

  1. public interface FruitFactory {  
  2.     Fruit createFruit();//生产水果  
  3. }  

苹果工厂

  1. public class AppleFactory implements FruitFactory {  
  2.     @Override  
  3.     public Apple createFruit() {  
  4.         return new Apple();  
  5.     }  
  6. }  

梨工厂

  1. public class PearFactory implements FruitFactory {  
  2.     @Override  
  3.     public Pear createFruit() {  
  4.         return new Pear();  
  5.     }  
  6. }  

使用工厂生产产品:

  1. public class FruitApp {  
  2.   
  3.     public static void main(String[] args){  
  4.         AppleFactory appleFactory = new AppleFactory();  
  5.         PearFactory pearFactory = new PearFactory();  
  6.         Apple apple = appleFactory.createFruit();//获得苹果  
  7.         Pear pear = pearFactory.createFruit();//获得梨  
  8.         apple.whatIm();  
  9.         pear.whatIm();  
  10.     }  
  11. }  

以上这种方式,虽然解耦了,也遵循了开闭原则,但是如果我需要的产品很多的话,需要创建非常多的工厂,所以这种方式的缺点也很明显。

5.3.4抽象工厂(Abstract Factory) 

定义:

为创建一组相关或者是相互依赖的对象提供的一个接口,而不需要指定它们的具体类。
角色:

1、抽象产品

2、具体产品

3、抽象工厂

4、具体工厂

使用说明:

抽象工厂和工厂方法的模式基本一样,区别在于,工厂方法是生产一个具体的产品,而抽象工厂可以用来生产一组相同,有相对关系的产品;重点在于一组,一批,一系列;举个例子,假如生产小米手机,小米手机有很多系列,小米note、红米note等;假如小米note生产需要的配件有825的处理器,6英寸屏幕,而红米只需要650的处理器和5寸的屏幕就可以了。用抽象工厂来实现:

cpu接口和实现类

  1. public interface Cpu {  
  2.     void run();  
  3.   
  4.     class Cpu650 implements Cpu {  
  5.         @Override  
  6.         public void run() {  
  7.             System.out.println("650 也厉害");  
  8.         }  
  9.     }  
  10.   
  11.     class Cpu825 implements Cpu {  
  12.         @Override  
  13.         public void run() {  
  14.             System.out.println("825 更强劲");  
  15.         }  
  16.     }  
  17. }  

屏幕接口和实现类

  1. public interface Screen {  
  2.   
  3.     void size();  
  4.   
  5.     class Screen5 implements Screen {  
  6.   
  7.         @Override  
  8.         public void size() {  
  9.             System.out.println("" +  
  10.                     "5寸");  
  11.         }  
  12.     }  
  13.   
  14.     class Screen6 implements Screen {  
  15.   
  16.         @Override  
  17.         public void size() {  
  18.             System.out.println("6寸");  
  19.         }  
  20.     }  
  21. }  

抽象工厂接口

  1. public interface PhoneFactory {  
  2.   
  3.     Cpu getCpu();//使用的cpu  
  4.   
  5.     Screen getScreen();//使用的屏幕  
  6. }  

小米手机工厂

  1. public class XiaoMiFactory implements PhoneFactory {  
  2.     @Override  
  3.     public Cpu.Cpu825 getCpu() {  
  4.         return new Cpu.Cpu825();//高性能处理器  
  5.     }  
  6.   
  7.     @Override  
  8.     public Screen.Screen6 getScreen() {  
  9.         return new Screen.Screen6();//6寸大屏  
  10.     }  
  11. }  

红米手机工厂

  1. public class HongMiFactory implements PhoneFactory {  
  2.   
  3.     @Override  
  4.     public Cpu.Cpu650 getCpu() {  
  5.         return new Cpu.Cpu650();//高效处理器  
  6.     }  
  7.   
  8.     @Override  
  9.     public Screen.Screen5 getScreen() {  
  10.         return new Screen.Screen5();//小屏手机  
  11.     }  
  12. }  

使用工厂生产产品:

  1. public class PhoneApp {  
  2.     public static void main(String[] args){  
  3.         HongMiFactory hongMiFactory = new HongMiFactory();  
  4.         XiaoMiFactory xiaoMiFactory = new XiaoMiFactory();  
  5.         Cpu.Cpu650 cpu650 = hongMiFactory.getCpu();  
  6.         Cpu.Cpu825 cpu825 = xiaoMiFactory.getCpu();  
  7.         cpu650.run();  
  8.         cpu825.run();  
  9.   
  10.         Screen.Screen5 screen5 = hongMiFactory.getScreen();  
  11.         Screen.Screen6 screen6 = xiaoMiFactory.getScreen();  
  12.         screen5.size();  
  13.         screen6.size();  
  14.     }  
  15. }  

以上例子可以看出,抽象工厂可以解决一系列的产品生产的需求,对于大批量,多系列的产品,用抽象工厂可以更好的管理和扩展。

5.3.5三种工厂方式总结 

1、对于简单工厂和工厂方法来说,两者的使用方式实际上是一样的,如果对于产品的分类和名称是确定的,数量是相对固定的,推荐使用简单工厂模式;

2、抽象工厂用来解决相对复杂的问题,适用于一系列、大批量的对象生产。

5.4代理模式(Proxy) 

5.4.1什么是代理模式?

代理模式给某一个对象提供一个代理对象,并由代理对象控制对原对象的引用。通俗的来讲代理模式就是我们生活中常见的中介。

举个例子来说明:假如说我现在想买一辆二手车,虽然我可以自己去找车源,做质量检测等一系列的车辆过户流程,但是这确实太浪费我得时间和精力了。我只是想买一辆车而已为什么我还要额外做这么多事呢?于是我就通过中介公司来买车,他们来给我找车源,帮我办理车辆过户流程,我只是负责选择自己喜欢的车,然后付钱就可以了。用图表示如下:

5.4.2为什么要用代理模式?

中介隔离作用:

在某些情况下,一个客户类不想或者不能直接引用一个委托对象,而代理类对象可以在客户类和委托对象之间起到中介的作用,其特征是代理类和委托类实现相同的接口。

开闭原则,增加功能:

代理类除了是客户类和委托类的中介之外,我们还可以通过给代理类增加额外的功能来扩展委托类的功能,这样做我们只需要修改代理类而不需要再修改委托类,符合代码设计的开闭原则。代理类主要负责为委托类预处理消息、过滤消息、把消息转发给委托类,以及事后对返回结果的处理等。代理类本身并不真正实现服务,而是同过调用委托类的相关方法,来提供特定的服务。真正的业务功能还是由委托类来实现,但是可以在业务功能执行的前后加入一些公共的服务。例如我们想给项目加入缓存、日志这些功能,我们就可以使用代理类来完成,而没必要修改已经封装好的委托类。

;