YOLOv8目标检测创新改进与实战案例专栏
专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例
介绍
摘要
我们旨在为目标检测领域提供一种高效且性能卓越的目标检测器,称为YOLO-MS。其核心设计基于一系列调查研究,关于不同核心大小的卷积如何影响不同尺度物体的检测性能。研究结果是一种新策略,能够显著增强实时目标检测器的多尺度特征表示能力。为验证我们策略的有效性,我们构建了一个网络架构,命名为YOLO-MS。我们从零开始在MS COCO数据集上训练我们的YOLO-MS,不依赖于任何其他大规模数据集,如ImageNet,或预训练权重。无需任何附加装置,我们的YOLO-MS就超越了最新的实时目标检测器,包括YOLO-v7和RTMDet,当使用可比较的参数数量和FLOPs时。以YOLO-MS的XS版本为例,仅有4.5M的可学习参数和8.7G FLOPs,就能在MS COCO上达到43%+的AP得分,比相同模型大小的RTMDet高出约2%+。此外,我们的工作还可以作为一个即插即用的模块用于其他YOLO模型。通常,我们的方法显著提高了YOLOv8的AP,从37%+提高到了40%+,而且使用的参数和FLOPs还更少。
创新点
-
多尺度构建块(MS-Block)设计:YOLO-MS引入了MS-Block,一个具有分层特征融合策略的构建块,旨在增强实时目标检测器在提取多尺度特征时的能力。MS-Block通过将输入特征分割并传递到多个分支中,并在每个分支中应用具有不同Kernel大小的Inverted Bottleneck Block,来编码不同尺度的特征。
-
异构Kernel选择(HKS)协议:为了更有效地捕捉多尺度语义信息,YOLO-MS提出了一种在不同阶段中采用不同大小Kernel的策略。具体地,在编码器的浅层使用小Kernel卷积处理高分辨率特征,在深层使用大Kernel卷积捕捉更广泛的信息。这种设计使得YOLO-MS能够在保持高效推理的同时,提升对不同尺寸目标的检测性能。
-
高效性能与准确性的平衡:YOLO-MS在保持较低计算复杂度的条件下,实现了优于当时最先进实时目标检测器的性能。这得益于其精心设计的网络结构和创新的特征表示策略,如MS-Block和HKS协议,使得模型在不依赖任何大规模数据集预训练的情况下,也能在公开数据集上达到高精度。
-
即插即用的模块化设计:YOLO-MS不仅作为一个独立的目标检测模型存在,