Bootstrap

第六章 数与二叉树

 /* c6-1.h 二叉树的顺序存储表示 */
 #define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */
 typedef TElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点 */

 typedef struct
 {
   int level,order; /* 结点的层,本层序号(按满二叉树计算) */
 }position;

 


 /* bo6-1.c 二叉树的顺序存储(存储结构由c6-1.h定义)的基本操作(23个) */
 #define ClearBiTree InitBiTree /* 在顺序存储结构中,两函数完全一样 */
 #define DestroyBiTree InitBiTree /* 在顺序存储结构中,两函数完全一样 */
 void InitBiTree(SqBiTree T)
 { /* 构造空二叉树T。因为T是数组名,故不需要& */
   int i;
   for(i=0;i<MAX_TREE_SIZE;i++)
     T[i]=Nil; /* 初值为空(Nil在主程中定义) */
 }


 void CreateBiTree(SqBiTree T)
 { /* 按层序次序输入二叉树中结点的值(字符型或整型), 构造顺序存储的二叉树T */
   int i=0;
 #if CHAR /* 结点类型为字符 */
   int l;
   char s[MAX_TREE_SIZE];
   InitBiTree(T); /* 构造空二叉树T */
   printf("请按层序输入结点的值(字符),空格表示空结点,结点数≤%d:\n",MAX_TREE_SIZE);
   gets(s); /* 输入字符串 */
   l=strlen(s); /* 求字符串的长度 */
   for(;i<l;i++) /* 将字符串赋值给T */
     T[i]=s[i];
 #else /* 结点类型为整型 */
   InitBiTree(T); /* 构造空二叉树T */
   printf("请按层序输入结点的值(整型),0表示空结点,输999结束。结点数≤%d:\n",MAX_TREE_SIZE);
   while(1)
   {
     scanf("%d",&T[i]);
     if(T[i]==999)
     {
       T[i]=Nil;
       break;
     }
     i++;
   }
 #endif
   for(i=1;i<MAX_TREE_SIZE;i++)
     if(T[(i+1)/2-1]==Nil&&T[i]!=Nil) /* 此非根结点(不空)无双亲 */
     {
       printf("出现无双亲的非根结点"form"\n",T[i]);
       exit(ERROR);
     }
 }


 Status BiTreeEmpty(SqBiTree T)
 { /* 初始条件:二叉树T存在。操作结果:若T为空二叉树,则返回TRUE,否则FALSE */
   if(T[0]==Nil) /* 根结点为空,则树空 */
     return TRUE;
   else
     return FALSE;
 }


 int BiTreeDepth(SqBiTree T)
 { /* 初始条件:二叉树T存在。操作结果:返回T的深度 */
   int i,j=-1;
   for(i=MAX_TREE_SIZE-1;i>=0;i--) /* 找到最后一个结点 */
     if(T[i]!=Nil)
       break;
   i++; /* 为了便于计算 */
   do
     j++;
   while(i>=pow(2,j));
   return j;
 }


 Status Root(SqBiTree T,TElemType *e)
 { /* 初始条件:二叉树T存在。操作结果:当T不空,用e返回T的根,返回OK;否则返回ERROR,e无定义 */
   if(BiTreeEmpty(T)) /* T空 */
     return ERROR;
   else
   {
     *e=T[0];
     return OK;
   }
 }


 TElemType Value(SqBiTree T,position e)
 { /* 初始条件:二叉树T存在,e是T中某个结点(的位置) */
   /* 操作结果:返回处于位置e(层,本层序号)的结点的值 */
   return T[(int)pow(2,e.level-1)+e.order-2];
 }


 Status Assign(SqBiTree T,position e,TElemType value)
 { /* 初始条件:二叉树T存在,e是T中某个结点(的位置) */
   /* 操作结果:给处于位置e(层,本层序号)的结点赋新值value */
   int i=(int)pow(2,e.level-1)+e.order-2; /* 将层、本层序号转为矩阵的序号 */
   if(value!=Nil&&T[(i+1)/2-1]==Nil) /* 给叶子赋非空值但双亲为空 */
     return ERROR;
   else if(value==Nil&&(T[i*2+1]!=Nil||T[i*2+2]!=Nil)) /*  给双亲赋空值但有叶子(不空) */
     return ERROR;
   T[i]=value;
   return OK;
 }


 TElemType Parent(SqBiTree T,TElemType e)
 { /* 初始条件:二叉树T存在,e是T中某个结点 */
   /* 操作结果:若e是T的非根结点,则返回它的双亲,否则返回"空" */
   int i;
   if(T[0]==Nil) /* 空树 */
     return Nil;
   for(i=1;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e) /* 找到e */
       return T[(i+1)/2-1];
   return Nil; /* 没找到e */
 }


 TElemType LeftChild(SqBiTree T,TElemType e)
 { /* 初始条件:二叉树T存在,e是T中某个结点。操作结果:返回e的左孩子。若e无左孩子,则返回"空" */
   int i;
   if(T[0]==Nil) /* 空树 */
     return Nil;
   for(i=0;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e) /* 找到e */
       return T[i*2+1];
   return Nil; /* 没找到e */
 }


 TElemType RightChild(SqBiTree T,TElemType e)
 { /* 初始条件:二叉树T存在,e是T中某个结点。操作结果:返回e的右孩子。若e无右孩子,则返回"空" */
   int i;
   if(T[0]==Nil) /* 空树 */
     return Nil;
   for(i=0;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e) /* 找到e */
       return T[i*2+2];
   return Nil; /* 没找到e */
 }


 TElemType LeftSibling(SqBiTree T,TElemType e)
 { /* 初始条件:二叉树T存在,e是T中某个结点 */
   /* 操作结果:返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空" */
   int i;
   if(T[0]==Nil) /* 空树 */
     return Nil;
   for(i=1;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e&&i%2==0) /* 找到e且其序号为偶数(是右孩子) */
       return T[i-1];
   return Nil; /* 没找到e */
 }


 TElemType RightSibling(SqBiTree T,TElemType e)
 { /* 初始条件:二叉树T存在,e是T中某个结点 */
   /* 操作结果:返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空" */
   int i;
   if(T[0]==Nil) /* 空树 */
     return Nil;
   for(i=1;i<=MAX_TREE_SIZE-1;i++)
     if(T[i]==e&&i%2) /* 找到e且其序号为奇数(是左孩子) */
       return T[i+1];
   return Nil; /* 没找到e */
 }


 void Move(SqBiTree q,int j,SqBiTree T,int i) /* InsertChild()用到。加 */
 { /* 把从q的j结点开始的子树移为从T的i结点开始的子树 */
   if(q[2*j+1]!=Nil) /* q的左子树不空 */
     Move(q,(2*j+1),T,(2*i+1)); /* 把q的j结点的左子树移为T的i结点的左子树 */
   if(q[2*j+2]!=Nil) /* q的右子树不空 */
     Move(q,(2*j+2),T,(2*i+2)); /* 把q的j结点的右子树移为T的i结点的右子树 */
   T[i]=q[j]; /* 把q的j结点移为T的i结点 */
   q[j]=Nil; /* 把q的j结点置空 */
 }


 void InsertChild(SqBiTree T,TElemType p,int LR,SqBiTree c)
 { /* 初始条件:二叉树T存在,p是T中某个结点的值,LR为0或1,非空二叉树c与T不相交且右子树为空 */
   /* 操作结果: 根据LR为0或1,插入c为T中p结点的左或右子树。p结点的原有左或右子树则成为c的右子树 */
   int j,k,i=0;
   for(j=0;j<(int)pow(2,BiTreeDepth(T))-1;j++) /* 查找p的序号 */
     if(T[j]==p) /* j为p的序号 */
       break;
   k=2*j+1+LR; /* k为p的左或右孩子的序号 */
   if(T[k]!=Nil) /* p原来的左或右孩子不空 */
     Move(T,k,T,2*k+2); /* 把从T的k结点开始的子树移为从k结点的右子树开始的子树 */
   Move(c,i,T,k); /* 把从c的i结点开始的子树移为从T的k结点开始的子树 */
 }


 typedef int QElemType; /* 设队列元素类型为整型(序号) */
 #include "c3-2.h" /* 链队列 */
 #include "bo3-2.c" /* 链队列的基本操作 */
 Status DeleteChild(SqBiTree T,position p,int LR)
 { /* 初始条件:二叉树T存在,p指向T中某个结点,LR为1或0 */
   /* 操作结果:根据LR为1或0,删除T中p所指结点的左或右子树 */
   int i;
   Status k=OK; /* 队列不空的标志 */
   LinkQueue q;
   InitQueue(&q); /* 初始化队列,用于存放待删除的结点 */
   i=(int)pow(2,p.level-1)+p.order-2; /* 将层、本层序号转为矩阵的序号 */
   if(T[i]==Nil) /* 此结点空 */
     return ERROR;
   i=i*2+1+LR; /* 待删除子树的根结点在矩阵中的序号 */
   while(k)
   {
     if(T[2*i+1]!=Nil) /* 左结点不空 */
       EnQueue(&q,2*i+1); /* 入队左结点的序号 */
     if(T[2*i+2]!=Nil) /* 右结点不空 */
       EnQueue(&q,2*i+2); /* 入队右结点的序号 */
     T[i]=Nil; /* 删除此结点 */
     k=DeQueue(&q,&i); /* 队列不空 */
   }
   return OK;
 }


 void(*VisitFunc)(TElemType); /* 函数变量 */
 void PreTraverse(SqBiTree T,int e)
 { /* PreOrderTraverse()调用 */
   VisitFunc(T[e]);
   if(T[2*e+1]!=Nil) /* 左子树不空 */
     PreTraverse(T,2*e+1);
   if(T[2*e+2]!=Nil) /* 右子树不空 */
     PreTraverse(T,2*e+2);
 }


 void PreOrderTraverse(SqBiTree T,void(*Visit)(TElemType))
 { /* 初始条件:二叉树存在,Visit是对结点操作的应用函数 */
   /* 操作结果:先序遍历T,对每个结点调用函数Visit一次且仅一次 */
   VisitFunc=Visit;
   if(!BiTreeEmpty(T)) /* 树不空 */
     PreTraverse(T,0);
   printf("\n");
 }


 void InTraverse(SqBiTree T,int e)
 { /* InOrderTraverse()调用 */
   if(T[2*e+1]!=Nil) /* 左子树不空 */
     InTraverse(T,2*e+1);
   VisitFunc(T[e]);
   if(T[2*e+2]!=Nil) /* 右子树不空 */
     InTraverse(T,2*e+2);
 }


 void InOrderTraverse(SqBiTree T,void(*Visit)(TElemType))
 { /* 初始条件:二叉树存在,Visit是对结点操作的应用函数 */
   /* 操作结果:中序遍历T,对每个结点调用函数Visit一次且仅一次 */
   VisitFunc=Visit;
   if(!BiTreeEmpty(T)) /* 树不空 */
     InTraverse(T,0);
   printf("\n");
 }


 void PostTraverse(SqBiTree T,int e)
 { /* PostOrderTraverse()调用 */
   if(T[2*e+1]!=Nil) /* 左子树不空 */
     PostTraverse(T,2*e+1);
   if(T[2*e+2]!=Nil) /* 右子树不空 */
     PostTraverse(T,2*e+2);
   VisitFunc(T[e]);
 }


 void PostOrderTraverse(SqBiTree T,void(*Visit)(TElemType))
 { /* 初始条件:二叉树T存在,Visit是对结点操作的应用函数 */
   /* 操作结果:后序遍历T,对每个结点调用函数Visit一次且仅一次 */
   VisitFunc=Visit;
   if(!BiTreeEmpty(T)) /* 树不空 */
     PostTraverse(T,0);
   printf("\n");
 }


 void LevelOrderTraverse(SqBiTree T,void(*Visit)(TElemType))
 { /* 层序遍历二叉树 */
   int i=MAX_TREE_SIZE-1,j;
   while(T[i]==Nil)
     i--; /* 找到最后一个非空结点的序号 */
   for(j=0;j<=i;j++) /* 从根结点起,按层序遍历二叉树 */
     if(T[j]!=Nil)
       Visit(T[j]); /* 只遍历非空的结点 */
   printf("\n");
 }


 void Print(SqBiTree T)
 { /* 逐层、按本层序号输出二叉树 */
   int j,k;
   position p;
   TElemType e;
   for(j=1;j<=BiTreeDepth(T);j++)
   {
     printf("第%d层: ",j);
     for(k=1;k<=pow(2,j-1);k++)
     {
       p.level=j;
       p.order=k;
       e=Value(T,p);
       if(e!=Nil)
printf("%d:"form" ",k,e);
     }
     printf("\n");
   }
 }


 /* main6-1.c 检验bo6-1.c的主程序,利用条件编译选择数据类型为char或int */
 /*#define CHAR 1 /* 字符型 */
 #define CHAR 0 /* 整型(二者选一) */
 #include"c1.h"
 #if CHAR
   typedef char TElemType;
   TElemType Nil=' '; /* 设字符型以空格符为空 */
   #define form "%c"
 #else
   typedef int TElemType;
   TElemType Nil=0; /* 设整型以0为空 */
   #define form "%d"
 #endif
 #include"c6-1.h"
 #include"bo6-1.c"


 void visit(TElemType e)
 {
   printf(form" ",e);
 }


 void main()
 {
   Status i;
   int j;
   position p;
   TElemType e;
   SqBiTree T,s;
   InitBiTree(T);
   CreateBiTree(T);
   printf("建立二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n",BiTreeEmpty(T),BiTreeDepth(T));
   i=Root(T,&e);
   if(i)
     printf("二叉树的根为:"form"\n",e);
   else
     printf("树空,无根\n");
   printf("层序遍历二叉树:\n");
   LevelOrderTraverse(T,visit);
   printf("中序遍历二叉树:\n");
   InOrderTraverse(T,visit);
   printf("后序遍历二叉树:\n");
   PostOrderTraverse(T,visit);
   printf("请输入待修改结点的层号 本层序号: ");
   scanf("%d%d",&p.level,&p.order);
   e=Value(T,p);
   printf("待修改结点的原值为"form"请输入新值: ",e);
   scanf("%*c"form"%*c",&e);
   Assign(T,p,e);
   printf("先序遍历二叉树:\n");
   PreOrderTraverse(T,visit);
   printf("结点"form"的双亲为"form",左右孩子分别为",e,Parent(T,e));
   printf(form","form",左右兄弟分别为",LeftChild(T,e),RightChild(T,e));
   printf(form","form"\n",LeftSibling(T,e),RightSibling(T,e));
   InitBiTree(s);
   printf("建立右子树为空的树s:\n");
   CreateBiTree(s);
   printf("树s插到树T中,请输入树T中树s的双亲结点 s为左(0)或右(1)子树: ");
   scanf(form"%d",&e,&j);
   InsertChild(T,e,j,s);
   Print(T);
   printf("删除子树,请输入待删除子树根结点的层号 本层序号 左(0)或右(1)子树: ");
   scanf("%d%d%d",&p.level,&p.order,&j);
   DeleteChild(T,p,j);
   Print(T);
   ClearBiTree(T);
   printf("清除二叉树后,树空否?%d(1:是 0:否) 树的深度=%d\n",BiTreeEmpty(T),BiTreeDepth(T));
   i=Root(T,&e);
   if(i)
     printf("二叉树的根为:"form"\n",e);
   else
     printf("树空,无根\n");
 }






悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;