Bootstrap

数学基础 -- 微积分之三角函数幂的积分

三角函数幂的积分处理

1. 积分形式

1.1 ∫ sin ⁡ m ( x ) cos ⁡ n ( x )   d x \int \sin^m(x) \cos^n(x) \, dx sinm(x)cosn(x)dx

1.1.1 当 n n n 为奇数时
  1. 分离奇数次幂

    如果 cos ⁡ n ( x ) \cos^n(x) cosn(x) 是奇数次幂,可以将其分解为 cos ⁡ n − 1 ( x ) ⋅ cos ⁡ ( x ) \cos^{n-1}(x) \cdot \cos(x) cosn1(x)cos(x)
    ∫ sin ⁡ m ( x ) cos ⁡ n ( x )   d x = ∫ sin ⁡ m ( x ) ⋅ cos ⁡ n − 1 ( x ) ⋅ cos ⁡ ( x )   d x \int \sin^m(x) \cos^n(x) \, dx = \int \sin^m(x) \cdot \cos^{n-1}(x) \cdot \cos(x) \, dx sinm(x)cosn(x)dx=sinm(x)cosn1(x)cos(x)dx

  2. 代换法

    • 代换 cos ⁡ ( x ) = u \cos(x) = u cos(x)=u

      u = cos ⁡ ( x ) u = \cos(x) u=cos(x),则 − sin ⁡ ( x )   d x = d u -\sin(x) \, dx = du sin(x)dx=du sin ⁡ ( x )   d x = − d u \sin(x) \, dx = -du sin(x)dx=du
      ∫ sin ⁡ m ( x ) cos ⁡ n ( x )   d x = − ∫ sin ⁡ m ( x ) ⋅ u n − 1   d u \int \sin^m(x) \cos^n(x) \, dx = -\int \sin^m(x) \cdot u^{n-1} \, du sinm(x)cosn(x)dx=sinm(x)un1du

      使用 sin ⁡ 2 ( x ) = 1 − cos ⁡ 2 ( x ) \sin^2(x) = 1 - \cos^2(x) sin2(x)=1cos2(x),即 sin ⁡ 2 ( x ) = 1 − u 2 \sin^2(x) = 1 - u^2 sin2(x)=1u2,所以:
      sin ⁡ m ( x ) = ( 1 − u 2 ) m / 2 \sin^m(x) = (1 - u^2)^{m/2} sinm(x)=(1u2)m/2

      代入得到:
      ∫ sin ⁡ m ( x ) cos ⁡ n ( x )   d x = − ∫ ( 1 − u 2 ) m / 2 ⋅ u n − 1   d u \int \sin^m(x) \cos^n(x) \, dx = -\int (1 - u^2)^{m/2} \cdot u^{n-1} \, du sinm(x)cosn(x)dx=(1u2)m/2un1du

    • 例子

      计算 ∫ sin ⁡ 2 ( x ) cos ⁡ 3 ( x )   d x \int \sin^2(x) \cos^3(x) \, dx sin2(x)cos3(x)dx

      cos ⁡ ( x ) = u \cos(x) = u cos(x)=u,则 sin ⁡ 2 ( x ) = 1 − u 2 \sin^2(x) = 1 - u^2 sin2(x)=1u2,所以:
      ∫ sin ⁡ 2 ( x ) cos ⁡ 3 ( x )   d x = − ∫ ( 1 − u 2 ) ⋅ u 2   d u = − ∫ ( u 2 − u 4 )   d u \int \sin^2(x) \cos^3(x) \, dx = -\int (1 - u^2) \cdot u^2 \, du = -\int (u^2 - u^4) \, du sin2(x)cos3(x)dx=(1u2)u2du=(u2u4)du

      计算得到:
      − ( u 3 3 − u 5 5 ) + C = − ( cos ⁡ 3 ( x ) 3 − cos ⁡ 5 ( x ) 5 ) + C -\left(\frac{u^3}{3} - \frac{u^5}{5}\right) + C = -\left(\frac{\cos^3(x)}{3} - \frac{\cos^5(x)}{5}\right) + C (3u35u5)+C=(3cos3(x)5cos5(x))+C

1.1.2 当 m m m 为奇数时
  1. 分离奇数次幂

    如果 sin ⁡ m ( x ) \sin^m(x) sinm(x) 是奇数次幂,可以将其分解为 sin ⁡ m − 1 ( x ) ⋅ sin ⁡ ( x ) \sin^{m-1}(x) \cdot \sin(x) sinm1(x)sin(x)
    ∫ sin ⁡ m ( x ) cos ⁡ n ( x )   d x = ∫ sin ⁡ m − 1 ( x ) ⋅ sin ⁡ ( x ) ⋅ cos ⁡ n ( x )   d x \int \sin^m(x) \cos^n(x) \, dx = \int \sin^{m-1}(x) \cdot \sin(x) \cdot \cos^n(x) \, dx sinm(x)cosn(x)dx=sinm1(x)sin(x)cosn(x)dx

  2. 代换法

    • 代换 sin ⁡ ( x ) = u \sin(x) = u sin(x)=u

      u = sin ⁡ ( x ) u = \sin(x) u=sin(x),则 cos ⁡ ( x )   d x = d u \cos(x) \, dx = du cos(x)dx=du
      ∫ sin ⁡ m ( x ) cos ⁡ n ( x )   d x = ∫ u m ⋅ cos ⁡ n ( x )   d u \int \sin^m(x) \cos^n(x) \, dx = \int u^m \cdot \cos^n(x) \, du sinm(x)cosn(x)dx=umcosn(x)du

      使用 cos ⁡ 2 ( x ) = 1 − sin ⁡ 2 ( x ) \cos^2(x) = 1 - \sin^2(x) cos2(x)=1sin2(x),即 cos ⁡ 2 ( x ) = 1 − u 2 \cos^2(x) = 1 - u^2 cos2(x)=1u2,所以:
      cos ⁡ n ( x ) = ( 1 − u 2 ) n / 2 \cos^n(x) = (1 - u^2)^{n/2} cosn(x)=(1u2)n/2

      代入得到:
      ∫ u m ⋅ ( 1 − u 2 ) n / 2   d u \int u^m \cdot (1 - u^2)^{n/2} \, du um(1u2)n/2du

    • 例子

      计算 ∫ sin ⁡ 3 ( x ) cos ⁡ 2 ( x )   d x \int \sin^3(x) \cos^2(x) \, dx sin3(x)cos2(x)dx

      sin ⁡ ( x ) = u \sin(x) = u sin(x)=u,则 cos ⁡ 2 ( x ) = 1 − u 2 \cos^2(x) = 1 - u^2 cos2(x)=1u2,所以:
      ∫ sin ⁡ 3 ( x ) cos ⁡ 2 ( x )   d x = ∫ u 3 ⋅ ( 1 − u 2 )   d u \int \sin^3(x) \cos^2(x) \, dx = \int u^3 \cdot (1 - u^2) \, du sin3(x)cos2(x)dx=u3(1u2)du

      展开并计算:
      ∫ ( u 3 − u 5 )   d u = u 4 4 − u 6 6 + C = sin ⁡ 4 ( x ) 4 − sin ⁡ 6 ( x ) 6 + C \int (u^3 - u^5) \, du = \frac{u^4}{4} - \frac{u^6}{6} + C = \frac{\sin^4(x)}{4} - \frac{\sin^6(x)}{6} + C (u3u5)du=4u46u6+C=4sin4(x)6sin6(x)+C

总结

  • n n n 为奇数时,处理方法是将 cos ⁡ n ( x ) \cos^n(x) cosn(x) 分解为 cos ⁡ n − 1 ( x ) ⋅ cos ⁡ ( x ) \cos^{n-1}(x) \cdot \cos(x) cosn1(x)cos(x),并通过代换 cos ⁡ ( x ) = u \cos(x) = u cos(x)=u 将积分转化为 ∫ ( 1 − u 2 ) m / 2 ⋅ u n − 1   d u \int (1 - u^2)^{m/2} \cdot u^{n-1} \, du (1u2)m/2un1du
  • m m m 为奇数时,处理方法是将 sin ⁡ m ( x ) \sin^m(x) sinm(x) 分解为 sin ⁡ m − 1 ( x ) ⋅ sin ⁡ ( x ) \sin^{m-1}(x) \cdot \sin(x) sinm1(x)sin(x),并通过代换 sin ⁡ ( x ) = u \sin(x) = u sin(x)=u 将积分转化为 ∫ u m ⋅ ( 1 − u 2 ) n / 2   d u \int u^m \cdot (1 - u^2)^{n/2} \, du um(1u2)n/2du

通过以上方法,可以有效处理涉及三角函数幂的积分问题。

;