Bootstrap

Java_Callable&FutureTask&CompletableFuture.

java.util.concurrent.Future

package java.util.concurrent;
public interface Future<V> {
	boolean cancel(boolean mayInterruptIfRunning);
	boolean isCancelled();
	boolean isDone();
	V get() throws InterruptedException, ExecutionException;
	V get(long timeout, TimeUnit unit)throws InterruptedException, ExecutionException, TimeoutException;
}

java.lang.Runnable

package java.lang;
@FunctionalInterface
public interface Runnable {
	public abstract void run();
}

java.util.concurrent.RunnableFuture

package java.util.concurrent;
public interface RunnableFuture<V> extends Runnable, Future<V> {
	void run();
}

java.util.concurrent.Callable

package java.util.concurrent;
@FunctionalInterface
public interface Callable<V> {
	V call() throws Exception;
}

java.util.concurrent.FutureTask

注意:在获取结果的时候 需要阻塞线程,不是真正意义上的 异步。

package java.util.concurrent;
import java.util.concurrent.locks.LockSupport;
public class FutureTask<V> implements RunnableFuture<V> {

	private volatile int state;						//状态
    private static final int NEW          = 0;		//new状态
    private static final int COMPLETING   = 1;		//完成状态,正在赋值结果的状态,一般是 瞬时状态
    private static final int NORMAL       = 2;		//普通状态
    private static final int EXCEPTIONAL  = 3;		//异常状态
    private static final int CANCELLED    = 4;		//取消状态
    private static final int INTERRUPTING = 5;		//中断 状态
    private static final int INTERRUPTED  = 6;		//中断的 状态

    private Callable<V> callable;
    private Object outcome;							//最后结果
    private volatile Thread runner;
    private volatile WaitNode waiters;				//获取结果的 等待线程;在别的线程 get 结果时候,本线程结果没有出来的时候,则会加入到 waiters 中去


    private static final sun.misc.Unsafe UNSAFE;	//直接访问内存
    private static final long stateOffset;
    private static final long runnerOffset;
    private static final long waitersOffset;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class<?> k = FutureTask.class;
            stateOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("state"));	//state 的内存地址
            runnerOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("runner"));	//runner 的内存地址
            waitersOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("waiters"));//waiters 的内存地址
        } catch (Exception e) {
            throw new Error(e);
        }
    }

    //构造方法1
    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable 设置初始状态
    }
    //构造方法2
    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);	//转化 runnable 为 callable ;在 任务运行成功之后,返回 result
        this.state = NEW;       // ensure visibility of callable 设置初始状态
    }
    //是否已经取消了任务
    public boolean isCancelled() {
        return state >= CANCELLED;
    }
    //任务是否已经完成
    public boolean isDone() {
        return state != NEW;
    }

    //run 方法
    public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))	//如果runner是null,则设置 runner 为当前线程,并返回 true 
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();	//执行callable 的 run 方法
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);	//callable 的 run 方法 执行 成功后,设置 返回值 给 outcome
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

    //callable 的 run 方法 执行 成功后,设置 返回值 给 outcome,并更新 state 为 NORMAL
    protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();	//移除所有等待的 线程
        }
    }

	//callable 的 run 方法 执行 发生异常 后,设置 异常 给 outcome,并更新 state 为 EXCEPTIONAL
    protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = t;
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
            finishCompletion();	//移除所有等待的 线程
        }
    }

    // 取消任务
    public boolean cancel(boolean mayInterruptIfRunning) {
        if (!(state == NEW &&
              UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
                  mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))   //设置 state 状态
            return false;
        try {    // in case call to interrupt throws exception
            if (mayInterruptIfRunning) {
                try {
                    Thread t = runner;
                    if (t != null)
                        t.interrupt();  //中断 这个 线程;注意这里只是 设置 此线程的 interrupt flag 具体的 中断 响应 需要 用户自己 处理
                } finally { // final state
                    UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);   //设置 state 状态 为 INTERRUPTED
                }
            }
        } finally {
            finishCompletion(); //移除所有等待的 线程
        }
        return true;
    }

    //简单的 linked list 队列 记录等待线程
    static final class WaitNode {
        volatile Thread thread;
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }

    //移除所有等待的 线程
    private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);	//激活 这个等待线程
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;	//继续循环
                }
                break;
            }
        }

        done();		//子类可以实现的 空方法

        callable = null;        // to reduce footprint
    }




    //报告结果
    private V report(int s) throws ExecutionException {
        Object x = outcome;	//拿到最终结果
        if (s == NORMAL)	//运行没有异常的话 返回结果
            return (V)x;
        if (s >= CANCELLED)	//运行出现 CANCELLED 及其之后的 状态的话,抛出 CancellationException
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);	//运行出现异常的话 抛出 异常
    }

    //阻塞式获取结果
    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)	//还没有完成
            s = awaitDone(false, 0L);	//待 futureTask 的 run 执行完成之后,会在 set|setException 方法里面调用 finishCompletion 方法 ,唤醒所有的 等待线程;之后 这里就可以 继续执行了
        return report(s);
    }

    //等待完成
    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();			//让出 cpu,此线程暂停
            else if (q == null)
                q = new WaitNode();		//构造 WaitNode 实例
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);	//新增 本线程WaitNode 到 waiters 队列最前面
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);			//暂停当前线程,当 run 方法执行完成之后,会调用 LockSupport.unpark 继续执行
        }
    }


    //从 waiters 队列中 移除 node.thread = null 的 所有节点
    private void removeWaiter(WaitNode node) {
        if (node != null) {
            node.thread = null;	//置 node.thread 为 null
            retry:
            for (;;) {          // restart on removeWaiter race
                for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                    s = q.next;
                    if (q.thread != null)
                        pred = q;	//继续向下遍历 node 节点
                    else if (pred != null) {
                        pred.next = s; //去除这个 null thread 的节点
                        if (pred.thread == null) // check for race
                            continue retry;
                    }
                    else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                          q, s))
                        continue retry;
                }
                break;
            }
        }
    }
}

java.util.concurrent.Executors

package java.util.concurrent;
import java.util.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.security.AccessControlContext;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;
import java.security.AccessControlException;
import sun.security.util.SecurityConstants;

public class Executors {
	public static <T> Callable<T> callable(Runnable task, T result) {	//转化 runnable 为 callable 
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }

    //转化 runnable 为 callable ;在 任务运行成功之后,返回 result
    static final class RunnableAdapter<T> implements Callable<T> {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }
}

CompletableFuture 相关

Future 类通过 get() 方法阻塞等待获取异步执行的运行结果,性能比较差。
JDK1.8 中,Java 提供了 CompletableFuture 类,它是基于异步函数式编程。相对阻塞式等待返回结果,CompletableFuture 可以通过回调的方式来处理计算结果,实现了异步非阻塞,性能更优。
CompletableFuture 实现了 Future 和 CompletionStage 接口, 并提供了多种实现异步编程的方法,如supplyAsync, runAsync以及thenApplyAsync。

java.util.concurrent.CompletionStage

源码解读

package java.util.concurrent;
import java.util.function.Supplier;
import java.util.function.Consumer;
import java.util.function.BiConsumer;
import java.util.function.Function;
import java.util.function.BiFunction;
import java.util.concurrent.Executor;

public interface CompletionStage<T> {
    //上一个task 正常结束,结果作为下一个task 的 入参

    //上一个task 正常结束,结果作为下一个task 的 入参,最后返回结果
    //同步串行 下一个 task
    public <U> CompletionStage<U> thenApply(Function<? super T,? extends U> fn);
    //异步串行 下一个 task
    public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn);
    //异步串行 下一个 task;可以指定线程池
    public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor);

    //上一个task 正常结束,结果作为下一个task 的 入参,最后不用返回结果
    //同步串行 下一个 task
    public CompletionStage<Void> thenAccept(Consumer<? super T> action);
    //异步串行 下一个 task
    public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);
    //异步串行 下一个 task;可以指定线程池
    public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action, Executor executor);



    //上一个task 正常结束,开始下一个task 
    //上一个task 正常结束,同步开始下一个task 
    public CompletionStage<Void> thenRun(Runnable action);
    //上一个task 正常结束,异步开始下一个task 
    public CompletionStage<Void> thenRunAsync(Runnable action);
    //上一个task 正常结束,异步开始下一个task ;可以指定线程池
    public CompletionStage<Void> thenRunAsync(Runnable action, Executor executor);

    //基于上一段 正常执行状态,执行下一阶段
    //同步
    public <U> CompletionStage<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);
    //异步
    public <U> CompletionStage<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn);
    //异步 可以指定 线程池
    public <U> CompletionStage<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn, Executor executor);


    //基于上一段 执行完毕的状态 执行下一阶段;消费其正常或者异常结果;即使 上一阶段 执行异常 也会执行 下一阶段
    //同步
    public <U> CompletionStage<U> handle(BiFunction<? super T, Throwable, ? extends U> fn);
    //异步
    public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn);
    //异步 可以指定 线程池
    public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn, Executor executor);


    //基于上一段 执行完毕的状态和结果 执行下一阶段;消费其结果;即使 上一阶段 执行异常 也会执行 下一阶段
    //同步
    public CompletionStage<T> whenComplete(BiConsumer<? super T, ? super Throwable> action);
    //异步
    public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action);
    //异步 可以指定 线程池
    public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action, Executor executor);


    //上 二阶段 执行完成,开始执行下一阶段
    //同步
    public CompletionStage<Void> runAfterBoth(CompletionStage<?> other, Runnable action);
    //异步
    public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other, Runnable action);
    //异步,可以指定 线程池
    public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other, Runnable action, Executor executor);



    //上两阶段执行完毕,开始下一阶段 结果作为参数 执行 fn 处理
    //上两阶段执行完毕,开始下一阶段 结果作为参数 执行 fn 处理,返回结果
    //同步 
    public <U,V> CompletionStage<V> thenCombine(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn);
    //异步 
    public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn);
    //异步 可以指定 线程池
    public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn, Executor executor);


    //上两阶段执行完毕,结果作为 参数执行 函数,不返回结果
    //同步 
    public <U> CompletionStage<Void> thenAcceptBoth(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action);
    //异步
    public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action);
    //异步,可以指定 线程池
    public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action, Executor executor);



    //上两阶段  任何一个执行完成 结果作为参数 执行 函数 返回结果
    //同步
    public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other, Function<? super T, U> fn);
    //异步
    public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T, U> fn);
    //异步,可以指定 线程池
    public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T, U> fn, Executor executor);

    //上两阶段  任何一个执行完成 结果作为参数 执行 函数 不返回结果
    //同步
    public CompletionStage<Void> acceptEither(CompletionStage<? extends T> other, Consumer<? super T> action);
    //异步
    public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action);
    //异步,可以指定 线程池
    public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action, Executor executor);

    //上两阶段  任何一个执行完成 执行下一阶段 
    //同步
    public CompletionStage<Void> runAfterEither(CompletionStage<?> other, Runnable action);
    //异步
    public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other, Runnable action);
    //异步,可以指定 线程池
    public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other, Runnable action, Executor executor);




    //上阶段异常处理
    public CompletionStage<T> exceptionally(Function<Throwable, ? extends T> fn);


    //接口实现类之间的 相互转换
    public CompletableFuture<T> toCompletableFuture();


}

CompletableFuture 捕获异常方式:handle、whenComplete、exceptionally

handle()whenComplete()exceptionly()
访问成功YesYesNo
访问失败YesYesYes
能从失败中恢复YesNoYes
能转换结果从T 到 UYesNoNo
成功时触发YesYesNo
失败时触发YesYesYes
有异步版本YesYesYes(12版本)

whenComplete() 并不能转换完成的结果。会内部抛出异常。

CompletableFuture

提供对异步计算的支持,可以通过回调的方式处理计算结果,CompletableFuture 类实现了CompletionStage和Future接口,所以还可以像之前使用Future那样使用CompletableFuture ,尽管已不再推荐这样用了。

;