Bootstrap

深度学习 文本检测的非极大值抑制算法

前言

文本目标检测与通用目标检测不一样:通用目标检测采用水平矩形框,而文本检测中文本行存在方向不确定性(水平、垂直、倾斜、弯曲),针对多方向文本一般采用带方向矩形框、四边形以及多边形。由于矩形框的表征方式不同,就衍生了不同版本的NMS,主要包括标准NMS、locality-aware NMS(LNMS)、inclined NMS(INMS)、mask NMS(MNMS)

标准NMS

算法步骤

  1. 将所有的输出框按cls score进行划分,如Pascal voc分20个类,也即将output_bbox按照其对应的cls score划分为21集合,包含一个bg类
  2. 在每个集合内根据各个bbox的cls score做降序排列,得到一个降序的list_k
  3. 从list_k中top1 cls score开始,计算该bbox_x与list中其他bbox_y的IOU。若IOU大于阈值T,则剔除该bbox_y,最终保留bbox_x,从list_k中取出选择list_k中top2 cls score(步骤3取出top 1 bbox_x后,原list_k中的top 2就相当于现list_k中的top 1了,但如果step-3中剔除的bbox_y刚好是原list_k中的top 2,就依次找top 3即可,理解这么个意思就行),重复step-3中的迭代操作,直至list_k中所有bbox都完成筛选;
  4. 每个集合list_k,重复step-3、4中的迭代操作,直至所有list_k都完成筛选。

代码实现

#coding=utf-8  
import numpy as np  
   
def py_cpu_nms(dets, thresh):  
     """Pure Python NMS baseline."""  
     # tl_x,tl_y,br_x,br_y及score  
     x1 = dets[:, 0]  
     y1 = dets[:, 1]  
     x2 = dets[:, 2]  
     y2 = dets[:, 3]  
     scores = dets[:, 4]  
   
    #计算每个检测框的面积,并对目标检测得分进行降序排序  
     areas = (x2 - x1 + 1) * (y2 - y1 + 1)  
     order = scores.argsort()[::-1]  
   
     keep = []   #保留框的结果集合  
     while order.size > 0:  
         i = order[0]  
         keep.append(i)#保留该类剩余box中得分最高的一个  
         # 计算最高得分矩形框与剩余矩形框的相交区域  
         xx1 = np.maximum(x1[i], x1[order[1:]])  
         yy1 = np.maximum(y1[i], y1[order[1:]])  
         xx2 = np.minimum(x2[i], x2[order[1:]])  
         yy2 = np.minimum(y2[i], y2[order[1:]])  
   
        #计算相交的面积,不重叠时面积为0  
         w = np.maximum(0.0, xx2 - xx1 + 1)  
         h = np.maximum(0.0, yy2 - yy1 + 1)  
         inter = w * h  
           
         #计算IoU:重叠面积 /(面积1+面积2-重叠面积)  
         ovr = inter / (areas[i] + areas[order[1:]] - inter)  
   
         #保留IoU小于阈值的box  
         inds = np.where(ovr <= thresh)[0]  
         order = order[inds + 1]   #注意这里索引加了1,因为ovr数组的长度比order数组的长度少一个  
   
     return keep  
       
  if __name__ == '__main__':  
     dets = np.array([[100,120,170,200,0.98],  
                      [20,40,80,90,0.99],  
                      [20,38,82,88,0.96],  
                      [200,380,282,488,0.9],  
                      [19,38,75,91, 0.8]])  
     py_cpu_nms(dets, 0.5) 

多边形NMS(PNMS)

思路与标准NMS一致,将标准的NMS中的矩形替换成多边形即可。

代码实现

#coding=utf-8  
import numpy as np  
from shapely.geometry import *  
  
def py_cpu_pnms(dets, thresh):  
    # 获取检测坐标点及对应的得分  
    bbox = dets[:, :4]  
    scores = dets[:, 4]   
  
     #这里文本的标注采用14个点,这里获取的是这14个点的偏移  
     info_bbox = dets[:, 5:33]     
   
     #保存最终点坐标  
     pts = []  
     for i in xrange(dets.shape[0]):  
         pts.append([[int(bbox[i, 0]) + info_bbox[i, j], int(bbox[i, 1]) + info_bbox[i, j+1]] for j in xrange(0,28,2)])  
   
     areas = np.zeros(scores.shape)  
     #得分降序  
     order = scores.argsort()[::-1]  
     inter_areas = np.zeros((scores.shape[0], scores.shape[0]))  
   
     for il in xrange(len(pts)):  
         #当前点集组成多边形,并计算该多边形的面积  
         poly = Polygon(pts[il])  
         areas[il] = poly.area  
           
         #多剩余的进行遍历  
         for jl in xrange(il, len(pts)):  
             polyj = Polygon(pts[jl])  
               
             #计算两个多边形的交集,并计算对应的面积  
             inS = poly.intersection(polyj)  
             inter_areas[il][jl] = inS.area  
             inter_areas[jl][il] = inS.area  
   
     #下面做法和nms一样  
     keep = []  
     while order.size > 0:  
         i = order[0]  
         keep.append(i)  
         ovr = inter_areas[i][order[1:]] / (areas[i] + areas[order[1:]] - inter_areas[i][order[1:]])  
         inds = np.where(ovr <= thresh)[0]  
         order = order[inds + 1]  
           
    return keep  

局部感知NMS

LNMS是在EAST文本检测中提出的,主要原因:文本检测面临的是成千上万个几何体,如果用普通的NMS,其计算复杂度,n是几何体个数,这是不可接受的。为了解决上述的时间复杂度问题,EAST提出了合并几何体的方法,当然这是基于临近几何体是高度相关的假设,注意:这里合并的四边形坐标是通过两个给定四边形的得分进行加权平均的。

算法步骤

  1. 先对所有的output box集合结合相应的阈值,大于阈值则进行合并,小于阈值则不合并,一次遍历进行加权合并,得到合并后bbox集合
  2. 对合并后的bbox集合进行标准的NMS操作

代码实现

import numpy as np  
from shapely.geometry import Polygon  
  
def intersection(g, p):  
    #取g,p中的几何体信息组成多边形  
    g = Polygon(g[:8].reshape((4, 2)))  
    p = Polygon(p[:8].reshape((4, 2)))  
  
    # 判断g,p是否为有效的多边形几何体  
     if not g.is_valid or not p.is_valid:  
         return 0  
   
     # 取两个几何体的交集和并集  
     inter = Polygon(g).intersection(Polygon(p)).area  
     union = g.area + p.area - inter  
     if union == 0:  
         return 0  
     else:  
         return inter/union  
   
 def weighted_merge(g, p):  
     # 取g,p两个几何体的加权(权重根据对应的检测得分计算得到)  
     g[:8] = (g[8] * g[:8] + p[8] * p[:8])/(g[8] + p[8])  
       
     #合并后的几何体的得分为两个几何体得分的总和  
     g[8] = (g[8] + p[8])  
     return g  
   
 def standard_nms(S, thres):  
     #标准NMS  
     order = np.argsort(S[:, 8])[::-1]  
     keep = []  
     while order.size > 0:  
         i = order[0]  
         keep.append(i)  
         ovr = np.array([intersection(S[i], S[t]) for t in order[1:]])  
         inds = np.where(ovr <= thres)[0]  
         order = order[inds+1]  
           
     return S[keep]  
   
 def nms_locality(polys, thres=0.3):  
     ''''' 
     locality aware nms of EAST 
     :param polys: a N*9 numpy array. first 8 coordinates, then prob 
     :return: boxes after nms 
     '''  
     S = []    #合并后的几何体集合  
     p = None   #合并后的几何体  
     for g in polys:  
         if p is not None and intersection(g, p) > thres:    #若两个几何体的相交面积大于指定的阈值,则进行合并  
             p = weighted_merge(g, p)  
         else:    #反之,则保留当前的几何体  
             if p is not None:  
                 S.append(p)  
             p = g  
     if p is not None:  
         S.append(p)  
     if len(S) == 0:  
         return np.array([])  
     return standard_nms(np.array(S), thres)  
   
 if __name__ == '__main__':  
     # 343,350,448,135,474,143,369,359  
     print(Polygon(np.array([[343, 350], [448, 135],  
                            [474, 143], [369, 359]])).area)  

倾斜NMS

算法步骤

  1. 对输出的检测框rbox按照得分进行降序排序rbox_lists
  2. 依次遍历上述的rbox_lists。具体做法是:将当前遍历的rbox与剩余的rbox进行交集运算得到相应的交集点集合,并根据判断相交点集合组成的凸边形的面积,计算每两个rbox的IOU。对于大于设定阈值的rbox进行滤除,保留小于设定阈值的rbox
  3. 得到最终的检测框

代码实现

#coding=utf-8  
from __future__ import absolute_import  
from __future__ import division  
from __future__ import print_function  
  
import numpy as np  
import cv2  
import tensorflow as tf  
  
def nms_rotate(decode_boxes, scores, iou_threshold, max_output_size,  
                use_angle_condition=False, angle_threshold=0, use_gpu=False, gpu_id=0):  
     """ 
     :param boxes: format [x_c, y_c, w, h, theta] 
     :param scores: scores of boxes 
     :param threshold: iou threshold (0.7 or 0.5) 
     :param max_output_size: max number of output 
     :return: the remaining index of boxes 
     """  
     if use_gpu:  
         #采用gpu方式  
         keep = nms_rotate_gpu(boxes_list=decode_boxes,  
                               scores=scores,  
                               iou_threshold=iou_threshold,  
                               angle_gap_threshold=angle_threshold,  
                               use_angle_condition=use_angle_condition,  
                               device_id=gpu_id)  
   
         keep = tf.cond(  
             tf.greater(tf.shape(keep)[0], max_output_size),  
             true_fn=lambda: tf.slice(keep, [0], [max_output_size]),  
             false_fn=lambda: keep)  
     else:#采用cpu方式  
         keep = tf.py_func(nms_rotate_cpu,  
                           inp=[decode_boxes, scores, iou_threshold, max_output_size],  
                          Tout=tf.int64)  
     return keep  
  
def nms_rotate_cpu(boxes, scores, iou_threshold, max_output_size):  
     keep = []#保留框的结果集合  
     order = scores.argsort()[::-1]#对检测结果得分进行降序排序  
     num = boxes.shape[0]#获取检测框的个数  
   
     suppressed = np.zeros((num), dtype=np.int)  
     for _i in range(num):  
         if len(keep) >= max_output_size:  #若当前保留框集合中的个数大于max_output_size时,直接返回  
             break  
   
         i = order[_i]  
         if suppressed[i] == 1: #对于抑制的检测框直接跳过  
             continue  
         keep.append(i)#保留当前框的索引  
         r1 = ((boxes[i, 1], boxes[i, 0]), (boxes[i, 3], boxes[i, 2]), boxes[i, 4])  #根据box信息组合成opencv中的旋转bbox  
         print("r1:{}".format(r1))  
         area_r1 = boxes[i, 2] * boxes[i, 3]  #计算当前检测框的面积  
         for _j in range(_i + 1, num):  #对剩余的而进行遍历  
             j = order[_j]  
             if suppressed[i] == 1:  
                 continue  
             r2 = ((boxes[j, 1], boxes[j, 0]), (boxes[j, 3], boxes[j, 2]), boxes[j, 4])  
             area_r2 = boxes[j, 2] * boxes[j, 3]  
             inter = 0.0  
   
             int_pts = cv2.rotatedRectangleIntersection(r1, r2)[1] #求两个旋转矩形的交集,并返回相交的点集合  
             if int_pts is not None:  
                order_pts = cv2.convexHull(int_pts, returnPoints=True)#求点集的凸边形  
                 int_area = cv2.contourArea(order_pts)#计算当前点集合组成的凸边形的面积  
                 inter = int_area * 1.0 / (area_r1 + area_r2 - int_area + 0.0000001)  
   
             if inter >= iou_threshold:#对大于设定阈值的检测框进行滤除  
                 suppressed[j] = 1  
        return np.array(keep, np.int64)  
   
 # gpu的实现方式  
 def nms_rotate_gpu(boxes_list, scores, iou_threshold, use_angle_condition=False, angle_gap_threshold=0, device_id=0):  
     if use_angle_condition:  
         y_c, x_c, h, w, theta = tf.unstack(boxes_list, axis=1)  
         boxes_list = tf.transpose(tf.stack([x_c, y_c, w, h, theta]))  
         det_tensor = tf.concat([boxes_list, tf.expand_dims(scores, axis=1)], axis=1)  
         keep = tf.py_func(rotate_gpu_nms,  
                           inp=[det_tensor, iou_threshold, device_id],  
                           Tout=tf.int64)  
         return keep  
     else:  
         y_c, x_c, h, w, theta = tf.unstack(boxes_list, axis=1)  
         boxes_list = tf.transpose(tf.stack([x_c, y_c, w, h, theta]))  
         det_tensor = tf.concat([boxes_list, tf.expand_dims(scores, axis=1)], axis=1)  
         keep = tf.py_func(rotate_gpu_nms,  
                           inp=[det_tensor, iou_threshold, device_id],  
                           Tout=tf.int64)  
         keep = tf.reshape(keep, [-1])  
         return keep  
   
 if __name__ == '__main__':  
     boxes = np.array([[50, 40, 100, 100, 0],  
                       [60, 50, 100, 100, 0],  
                       [50, 30, 100, 100, -45.],  
                       [200, 190, 100, 100, 0.]])  
   
     scores = np.array([0.99, 0.88, 0.66, 0.77])  
     keep = nms_rotate(tf.convert_to_tensor(boxes, dtype=tf.float32), tf.convert_to_tensor(scores, dtype=tf.float32),  
                       0.7, 5)  
     import os  
     os.environ["CUDA_VISIBLE_DEVICES"] = '0'  
     with tf.Session() as sess:  
         print(sess.run(keep))  

掩膜NMS(MNMS)

MNMS是在FTSN文本检测文章中提出的,基于分割掩膜图的基础上进行IoU计算。

算法步骤

  1. 将所有的检测框按照得分进行降序排序,得到box_lists。
  2. 对box_lists进行遍历,每次遍历当前box与剩余box的IoU,对于大于设定阈值的box进行滤除
  3. 得到最终的检测框

代码实现

#coding=utf-8  
#############################################  
# mask nms 实现  
# 2018.11.23 add  
#############################################  
import cv2  
import numpy as np  
import imutils  
import copy  
   
 EPS=0.00001  
   
 def get_mask(box,mask):  
     """根据box获取对应的掩膜"""  
     tmp_mask=np.zeros(mask.shape,dtype="uint8")  
     tmp=np.array(box.tolist(),dtype=np.int32).reshape(-1,2)  
     cv2.fillPoly(tmp_mask, [tmp], (255))  
     tmp_mask=cv2.bitwise_and(tmp_mask,mask)  
     return tmp_mask,cv2.countNonZero(tmp_mask)  
   
   
 def comput_mmi(area_a,area_b,intersect):  
     """ 
     计算MMI,2018.11.23 add 
     :param mask_a: 实例文本a的mask的面积 
     :param mask_b: 实例文本b的mask的面积 
     :param intersect: 实例文本a和实例文本b的相交面积 
     :return: 
     """  
     if area_a==0 or area_b==0:  
         area_a+=EPS  
         area_b+=EPS  
         print("the area of text is 0")  
     return max(float(intersect)/area_a,float(intersect)/area_b)  
   
  
 def mask_nms(dets, mask, thres=0.3):  
     """ 
     mask nms 实现函数 
     :param dets: 检测结果,是一个N*9的numpy, 
     :param mask: 当前检测的mask 
     :param thres: 检测的阈值 
     """  
     # 获取bbox及对应的score  
     bbox_infos=dets[:,:8]  
     scores=dets[:,8]  
   
     keep=[]  
     order=scores.argsort()[::-1]  
     print("order:{}".format(order))  
     nums=len(bbox_infos)  
     suppressed=np.zeros((nums), dtype=np.int)  
     print("lens:{}".format(nums))  
   
     # 循环遍历  
     for i in range(nums):  
         idx=order[i]  
         if suppressed[idx]==1:  
             continue  
         keep.append(idx)  
         mask_a,area_a=get_mask(bbox_infos[idx],mask)  
         for j in range(i,nums):  
             idx_j=order[j]  
             if suppressed[idx_j]==1:  
                 continue  
             mask_b, area_b =get_mask(bbox_infos[idx_j],mask)  
   
             # 获取两个文本的相交面积  
             merge_mask=cv2.bitwise_and(mask_a,mask_b)  
             area_intersect=cv2.countNonZero(merge_mask)  
   
             #计算MMI  
             mmi=comput_mmi(area_a,area_b,area_intersect)  
             # print("area_a:{},area_b:{},inte:{},mmi:{}".format(area_a,area_b,area_intersect,mmi))  
   
             if mmi >= thres:  
                 suppressed[idx_j] = 1  
   
    return dets[keep]  
;