Bootstrap

评估分类模型的指标:召回率、精确率、F1值

评估分类模型性能的方法是:混淆矩阵,其总体思路是统计A类别实例被预测(分类)为B类别的次数。召回率(Recall)和精度(Precise)是广泛用于统计学分类领域的两个度量值,用来评估分类结果的质量。

召回率(Recall Rate,也叫查全率)是检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率;
精度(Precision Rate,也叫查准率)是检索出的相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率。

一,混淆矩阵

要解释清楚精确率和召回率,得先解释混淆矩阵,二分类问题的混淆矩阵由 4 个数构成。

  • 真阴性(True Negatives,TN):算法预测为负例(N),实际上也是负例(N)的个数,即算法预测对了(True);
  • 真阳性(True Positives,TP):算法预测为正例(P),实际上是负例(N)的个数,即算法预测错了(False);
  • 假阴性(False Negatives,FN): 算法预测为负例(N),实际上是正例(P)的个数,即算法预测错了(False);
  • 假阳性(False Positives,FP):算法预测为正例(P),实际上也是正例(P)的个数,即算法预测对了(True)。

混淆矩阵定义如下:

;