Bootstrap

查找之二分搜索

经典问题:已知value数组元素按升序排序,在begin~end范围内,二分法查找关键字为key元素,若查找成功返回下标,否则返回-1;若begin、end越界,返回-1

一个二分查找的递归算法:(还有很多需要优化的地方)

public static int binarySearch(int[] value, int key, int begin, int end){
    if (begin<=end){   
      	int mid = (begin+end)/2;
        if (value[mid]==key) 
            return mid;
        if (key < value[mid])
            return binarySearch(value, key, begin, mid-1);
        return binarySearch(value, key, mid+1, end);
    }
    return -1;                                      
}

以下内容是根据labuladong的文章《我写了首诗,让你闭着眼睛也能写对二分搜索》(https://labuladong.gitbook.io/algo/mu-lu-ye/er-fen-cha-zhao-xiang-jie)学习总结的。

先给大家讲个笑话乐呵一下:

有一天阿东到图书馆借了 N 本书,出图书馆的时候,警报响了,于是保安把阿东拦下,要检查一下哪本书没有登记出借。阿东正准备把每一本书在报警器下过一下,以找出引发警报的书,但是保安露出不屑的眼神:你连二分查找都不会吗?于是保安把书分成两堆,让第一堆过一下报警器,报警器响;于是再把这堆书分成两堆…… 最终,检测了 logN 次之后,保安成功的找到了那本引起警报的书,露出了得意和嘲讽的笑容。于是阿东背着剩下的书走了。

从此,图书馆丢了 N - 1 本书。

二分查找并不简单,Knuth 大佬(发明 KMP 算法的那位)都说二分查找:思路很简单,细节是魔鬼。很多人喜欢拿整型溢出的 bug 说事儿,但是二分查找真正的坑根本就不是那个细节问题,而是在于到底要给 mid 加一还是减一,while 里到底用 <= 还是 <

本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。

4.1.1、零、二分查找框架

int binarySearch(int[] nums, int target) {    
	int left = 0, right = ...;    
	while(...) {        
		  int mid = left + (right - left) / 2;        
		  if (nums[mid] == target) {            
		  	...        
		  } else if (nums[mid] < target) {            
		  	left = ...        
		  } else if (nums[mid] > target) {            
		  	right = ...        
		  }    
	}    
	return ...;
 }

分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。

其中 ... 标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。

另外声明一下,计算 mid 时需要防止溢出,代码中 left + (right - left) / 2 就和 (left + right) / 2 的结果相同,但是有效防止了 leftright 太大直接相加导致溢出。

4.1.2、寻找一个数(基本的二分搜索)

这个场景是最简单的,可能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

int binarySearch(int[] nums, int target){    
	int left = 0;    
	int right = nums.length - 1; //注意    
	while(left <= right){        
		int mid = left + (right - left)/2;        
		if (nums[mid] == target) {          	
			return mid;        
		} else if(nums[mid] < target) {
	        left = mid + 1; //注意        
	    } else if(nums[mid] > target) {          	
	    	right = mid - 1; //注意        
	    }    
    }  
    return -1;
 }

1、为什么 while 循环的条件中是 <=,而不是 <? (这就是确定 “ 搜索区间 ”)

答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length

这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。

我们这个算法中使用的是前者 [left, right] 两端都闭的区间。这个区间其实就是每次进行搜索的区间

什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:

    if(nums[mid] == target) 
           return mid;

但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。

left <= right 的情况

while(left <= right) 的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。

left < right的情况

while(left < right) 的终止条件是 left == right,写成区间的形式就是 [right, right],或者带个具体的数字进去 [2, 2]这时候区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。

当然,如果你非要用 while(left < right) 也可以,我们已经知道了出错的原因,就打个补丁好了:

    //...    
    while(left < right) {       
     // ...    
    }    
    return nums[left] == target ? left : -1;
所以:对于所有的查找,一定要确定 搜索区间 是否覆盖了所有的情况!!!

2、为什么 left = mid + 1right = mid - 1?我看有的代码是 right = mid或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?

答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。

刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,下一步应该去搜索哪里呢?

当然是去搜索 [left, mid-1] 或者 [mid+1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除

3、此算法有什么缺陷

答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。

比如说给你有序数组 nums = [1,2,2,2,3]target 为 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。

这样的需求很常见,你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了

我们后续的算法就来讨论这两种二分查找的算法。

4.1.3、寻找左侧边界的二分搜索

以下是最常见的代码形式,其中的标记是需要注意的细节:(本节最后有另外一个版本【搜索区间两边都闭】的逻辑代码)

int left_bound(int[] nums, int target) {    
	if (nums.length == 0){
		return -1;
	} 
   
	int left = 0;    
	int right = nums.length; // 注意    
	while (left < right) { // 注意        
		int mid = left + (right - left) / 2;        
		if (nums[mid] == target) {            
			right = mid;        
		} else if (nums[mid] < target) {            
			left = mid + 1;        
		} else if (nums[mid] > target) {            
			right = mid; // 注意        
		}    
	}    
		return left;
}

1、为什么 while 中是 < 而不是 <=?

答:用相同的方法分析,因为 right = nums.length 而不是 nums.length - 1。因此每次循环的「搜索区间」是 [left, right) 左闭右开。

while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 为空,所以可以正确终止。

PS:这里先要说一个搜索左右边界和上面这个算法的一个区别,也是很多读者问的:刚才的 right 不是 nums.length - 1 吗,为啥这里非要写成 nums.length 使得「搜索区间」变成左闭右开呢

因为对于搜索左右侧边界的二分查找,这种写法比较普遍,我就拿这种写法举例了,保证你以后遇到这类代码可以理解。你非要用两端都闭的写法反而更简单,我会在后面写相关的代码,把三种二分搜索都用一种两端都闭的写法统一起来,你耐心往后看就行了。

2、为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办

答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:

对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个。

比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。

再比如说 nums = [2,3,5,7], target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。

综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1:

while (left < right) {
    //...
}
 // target 比所有数都大
 if (left == nums.length) return -1;// 类似之前算法的处理方式
 return nums[left] == target ? left : -1;

3、为什么 left = mid + 1right = mid?和之前的算法不一样?

答:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该是去掉 mid 分割成的两个区间,即 [left, mid)[mid + 1, right)

4、为什么该算法能够搜索左侧边界

答:关键在于对于 nums[mid] == target 这种情况的处理:

    if (nums[mid] == target)        right = mid;

可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。

5、为什么返回 left 而不是 right

答:都是一样的,因为 while 终止的条件是 left == right

6、能不能想办法把 right 变成 nums.length - 1,也就是继续使用两边都闭的「搜索区间」?这样就可以和第一种二分搜索在某种程度上统一起来了。

答:当然可以,只要你明白了「搜索区间」这个概念,就能有效避免漏掉元素,随便你怎么改都行。下面我们严格根据逻辑来修改:

因为你非要让搜索区间两端都闭,所以 right 应该初始化为 nums.length - 1,while 的终止条件应该是 left == right + 1,也就是其中应该用 <=

int left_bound(int[] nums, int target) {   // 搜索区间为 [left, right]    
	 int left = 0, right = nums.length - 1;    
	 while (left <= right) {       
		  int mid = left + (right - left) / 2;        
		  // if else ... 
	 }   
 }

因为搜索区间是两端都闭的,且现在是搜索左侧边界,所以 leftright 的更新逻辑如下:

if (nums[mid] < target) {    
	// 搜索区间变为 [mid+1, right]    
	left = mid + 1;
} else if (nums[mid] > target) {    
	// 搜索区间变为 [left, mid-1]    
	right = mid - 1;
} else if (nums[mid] == target) {    
	// 收缩右侧边界    
	right = mid - 1;
}

由于 while 的退出条件是 left == right + 1,所以当 targetnums 中所有元素都大时,会存在以下情况使得索引越界:

因此,最后返回结果的代码应该检查越界情况:

if (left >= nums.length || nums[left] != target)    
	return -1;
return left;

至此,整个算法就写完了,完整代码如下:

int left_bound(int[] nums, int target) {    
	int left = 0, right = nums.length - 1;    
	// 搜索区间为 [left, right]    
	while (left <= right) {        
		int mid = left + (right - left) / 2;        
		if (nums[mid] < target) {            
			// 搜索区间变为 [mid+1, right]            
			left = mid + 1;        
		} else if (nums[mid] > target) {            
			// 搜索区间变为 [left, mid-1]            
			right = mid - 1;        
		} else if (nums[mid] == target) {            
			// 收缩右侧边界            
			right = mid - 1;        
		}    
	}    
	// 检查出界情况    
	if (left >= nums.length || nums[left] != target) {
		return -1;  
	}
	return left;
}

这样就和第一种二分搜索算法统一了,都是两端都闭的「搜索区间」,而且最后返回的也是 left 变量的值。只要把住二分搜索的逻辑,两种形式大家看自己喜欢哪种记哪种吧。

4.1.4、寻找右侧边界的二分查找

类似寻找左侧边界的算法,这里也会提供两种写法,还是先写常见的左闭右开的写法,只有两处和搜索左侧边界不同,已标注:(本节最后有另外一个版本【搜索区间两边都闭】的逻辑代码)

    int right_bound(int[] nums, int target) {
        if (nums.length == 0) {
            return -1;
        }
        int left = 0, right = nums.length;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) {
                left = mid + 1; // 注意        
            } else if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid;
            }
        }
        return left - 1; // 注意}
    }

1、为什么这个算法能够找到右侧边界

答:类似地,关键点还是这里:

if (nums[mid] == target) {    
	left = mid + 1;
}

nums[mid] == target 时,不要立即返回,而是增大「搜索区间」的下界 left,使得区间不断向右收缩,达到锁定右侧边界的目的。

2、为什么最后返回 left - 1 而不像左侧边界的函数,返回 left?而且我觉得这里既然是搜索右侧边界,应该返回 right 才对。

答:首先,while 循环的终止条件是 left == right,所以 leftright 是一样的,你非要体现右侧的特点,返回 right - 1 好了。

至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:

if (nums[mid] == target) {    
	left = mid + 1;    // 这样想: mid = left - 1
}

因为我们对 left 的更新必须是 left = mid + 1,就是说 while 循环结束时,nums[left] 一定不等于 target 了,而 nums[left-1] 可能是 target

至于为什么 left 的更新必须是 left = mid + 1,同左侧边界搜索,就不再赘述。

3、为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办

答:类似之前的左侧边界搜索,因为 while 的终止条件是 left == right,就是说 left 的取值范围是 [0, nums.length],所以可以添加两行代码,正确地返回 -1:

while (left < right) {    
// ...
}
if (left == 0) return -1;
return nums[left-1] == target ? (left-1) : -1;

4、是否也可以把这个算法的「搜索区间」也统一成两端都闭的形式呢?这样这三个写法就完全统一了,以后就可以闭着眼睛写出来了

答:当然可以,类似搜索左侧边界的统一写法,其实只要改两个地方就行了:

    int right_bound(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] == target) {
                // 这里改成收缩左侧边界即可            
                left = mid + 1;
            }
        }
        // 这里改为检查 right 越界的情况    
        if (right < 0 || nums[right] != target) {
            return -1;
        }
        return right;
    }

target 比所有元素都小时,right 会被减到 -1,所以需要在最后防止越界:

至此,搜索右侧边界的二分查找的两种写法也完成了,其实将「搜索区间」统一成两端都闭反而更容易记忆,你说是吧?

4.1.5、逻辑统一

来梳理一下这些细节差异的因果逻辑:

第一个,最基本的二分查找算法

因为我们初始化 right = nums.length - 1
所以决定了我们的「搜索区间」是 [left, right]
所以决定了 while (left <= right)
同时也决定了 left = mid+1 和 right = mid-1
因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回

第二个,寻找左侧边界的二分查找

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid
因为我们需找到 target 的最左侧索引
所以当 nums[mid] == target 时不要立即返回而要收紧右侧边界以锁定左侧边界

第三个,寻找右侧边界的二分查找

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid
因为我们需找到 target 的最右侧索引
所以当 nums[mid] == target 时不要立即返回而要收紧左侧边界以锁定右侧边界
又因为收紧左侧边界时必须 left = mid + 1
所以最后无论返回 left 还是 right,必须减一

对于寻找左右边界的二分搜索,常见的手法是使用左闭右开的「搜索区间」,我们还根据逻辑将「搜索区间」全都统一成了两端都闭,便于记忆,只要修改两处即可变化出三种写法

 int binary_search(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] == target) {
                // 直接返回            
                return mid;
            }
        }
        // 直接返回    
        return -1;
    }

    int left_bound(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] == target) {
                // 别返回,锁定左侧边界            
                right = mid - 1;
            }
        }
        // 最后要检查 left 越界的情况    
        if (left >= nums.length || nums[left] != target) {
            return -1;
        }
        return left;
    }

    int right_bound(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] == target) {
                // 别返回,锁定右侧边界            
                left = mid + 1;
            }
        }
        // 最后要检查 right 越界的情况    
        if (right < 0 || nums[right] != target) {
            return -1;
        }
        return right;
    }

如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。

通过本文,你学会了:

1、分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。

2、注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。

3、如需定义左闭右开的「搜索区间」搜索左右边界,只要在 nums[mid] == target 时做修改即可,搜索右侧时需要减一。

4、如果将「搜索区间」全都统一成两端都闭,好记,只要稍改 nums[mid] == target 条件处的代码和返回的逻辑即可,推荐拿小本本记下,作为二分搜索模板

;