I started a similar question on another thread, but then I was focusing on how to use OpenCV. Having failed to achieve what I originally wanted, I will ask here exactly what I want.
I have two matrices. Matrix a is 2782x128 and Matrix b is 4000x128, both unsigned char values. The values are stored in a single array. For each vector in a, I need the index of the vector in b with the closest euclidean distance.
Ok, now my code to achieve this:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "main.h"
using namespace std;
void main(int argc, char* argv[])
{
int a_size;
unsigned char* a = NULL;
read_matrix(&a, a_size,"matrixa");
int b_size;
unsigned char* b = NULL;
read_matrix(&b, b_size,"matrixb");
LARGE_INTEGER liStart;
LARGE_INTEGER liEnd;
LARGE_INTEGER liPerfFreq;
QueryPerformanceFrequency( &liPerfFreq );
QueryPerformanceCounter( &liStart );
int* indexes = NULL;
min_distance_loop(&indexes, b, b_size, a, a_size);
QueryPerformanceCounter( &liEnd );
cout << "loop time: " << (liEnd.QuadPart - liStart.QuadPart) / long double(liPerfFreq.QuadPart) << "s." << endl;
if (a)
delete[]a;
if (b)
delete[]b;
if (indexes)
delete[]indexes;
return;
}
void read_matrix(unsigned char** matrix, int& matrix_size, char* matrixPath)
{
ofstream myfile;
float f;
FILE * pFile;
pFile = fopen (matrixPath,"r");
fscanf (pFile, "%d", &matrix_size);
*matrix = new unsigned char[matrix_size*128];
for (int i=0; i
{
unsigned int matPtr;
fscanf (pFile, "%u", &matPtr);
matrix[i]=(unsigned char)matPtr;
}
fclose (pFile);
}
void min_distance_loop(int** indexes, unsigned char* b, int b_size, unsigned char* a, int a_size)
{
const int descrSize = 128;
*indexes = (int*)malloc(a_size*sizeof(int));
int dataIndex=0;
int vocIndex=0;
int min_distance;
int distance;
int multiply;
unsigned char* dataPtr;
unsigned char* vocPtr;
for (int i=0; i
{
min_distance = LONG_MAX;
for (int j=0; j
{
distance=0;
dataPtr = &a[dataIndex];
vocPtr = &b[vocIndex];
for (int k=0; k
{
multiply = *dataPtr++-*vocPtr++;
distance += multiply*multiply;
// If the distance is greater than the previously calculated, exit
if (distance>min_distance)
break;
}
// if distance smaller
if (distance
{
min_distance = distance;
(*indexes)[i] = j;
}
vocIndex+=descrSize;
}
dataIndex+=descrSize;
vocIndex=0;
}
}
And attached are the files with sample matrices.
I am using windows.h just to calculate the consuming time, so if you want to test the code in another platform than windows, just change windows.h header and change the way of calculating the consuming time.
This code in my computer is about 0.5 seconds. The problem is that I have another code in Matlab that makes this same thing in 0.05 seconds. In my experiments, I am receiving several matrices like matrix a every second, so 0.5 seconds is too much.
Now the matlab code to calculate this:
aa=sum(a.*a,2); bb=sum(b.*b,2); ab=a*b';
d = sqrt(abs(repmat(aa,[1 size(bb,1)]) + repmat(bb',[size(aa,1) 1]) - 2*ab));
[minz index]=min(d,[],2);
Ok. Matlab code is using that (x-a)^2 = x^2 + a^2 - 2ab.
So my next attempt was to do the same thing. I deleted my own code to make the same calculations, but It was 1.2 seconds approx.
Then, I tried to use different external libraries. The first attempt was Eigen:
const int descrSize = 128;
MatrixXi a(a_size, descrSize);
MatrixXi b(b_size, descrSize);
MatrixXi ab(a_size, b_size);
unsigned char* dataPtr = matrixa;
for (int i=0; i
{
for (int j=0; j
{
a(i,j)=(int)*dataPtr++;
}
}
unsigned char* vocPtr = matrixb;
for (int i=0; i
{
for (int j=0; j
{
b(i,j)=(int)*vocPtr ++;
}
}
ab = a*b.transpose();
a.cwiseProduct(a);
b.cwiseProduct(b);
MatrixXi aa = a.rowwise().sum();
MatrixXi bb = b.rowwise().sum();
MatrixXi d = (aa.replicate(1,vocabulary_size) + bb.transpose().replicate(nframes,1) - 2*ab).cwiseAbs2();
int* index = NULL;
index = (int*)malloc(nframes*sizeof(int));
for (int i=0; i
{
d.row(i).minCoeff(&index[i]);
}
This Eigen code costs 1.2 approx for just the line that says: ab = a*b.transpose();
A similar code using opencv was used also, and the cost of the ab = a*b.transpose(); was 0.65 seconds.
So, It is real annoying that matlab is able to do this same thing so quickly and I am not able in C++! Of course being able to run my experiment would be great, but I think the lack of knowledge is what really is annoying me. How can I achieve at least the same performance than in Matlab? Any kind of soluting is welcome. I mean, any external library (free if possible), loop unrolling things, template things, SSE intructions (I know they exist), cache things. As I said, my main purpose is increase my knowledge for being able to code thinks like this with a faster performance.
Thanks in advance
EDIT: more code suggested by David Hammen. I casted the arrays to int before making any calculations. Here is the code:
void min_distance_loop(int** indexes, unsigned char* b, int b_size, unsigned char* a, int a_size)
{
const int descrSize = 128;
int* a_int;
int* b_int;
LARGE_INTEGER liStart;
LARGE_INTEGER liEnd;
LARGE_INTEGER liPerfFreq;
QueryPerformanceFrequency( &liPerfFreq );
QueryPerformanceCounter( &liStart );
a_int = (int*)malloc(a_size*descrSize*sizeof(int));
b_int = (int*)malloc(b_size*descrSize*sizeof(int));
for(int i=0; i
a_int[i]=(int)a[i];
for(int i=0; i
b_int[i]=(int)b[i];
QueryPerformanceCounter( &liEnd );
cout << "Casting time: " << (liEnd.QuadPart - liStart.QuadPart) / long double(liPerfFreq.QuadPart) << "s." << endl;
*indexes = (int*)malloc(a_size*sizeof(int));
int dataIndex=0;
int vocIndex=0;
int min_distance;
int distance;
int multiply;
/*unsigned char* dataPtr;
unsigned char* vocPtr;*/
int* dataPtr;
int* vocPtr;
for (int i=0; i
{
min_distance = LONG_MAX;
for (int j=0; j
{
distance=0;
dataPtr = &a_int[dataIndex];
vocPtr = &b_int[vocIndex];
for (int k=0; k
{
multiply = *dataPtr++-*vocPtr++;
distance += multiply*multiply;
// If the distance is greater than the previously calculated, exit
if (distance>min_distance)
break;
}
// if distance smaller
if (distance
{
min_distance = distance;
(*indexes)[i] = j;
}
vocIndex+=descrSize;
}
dataIndex+=descrSize;
vocIndex=0;
}
}
The entire process is now 0.6, and the casting loops at the beginning are 0.001 seconds. Maybe I did something wrong?
EDIT2: Anything about Eigen? When I look for external libs they always talk about Eigen and their speed. I made something wrong? Here a simple code using Eigen that shows it is not so fast. Maybe I am missing some config or some flag, or ...
MatrixXd A = MatrixXd::Random(1000, 1000);
MatrixXd B = MatrixXd::Random(1000, 500);
MatrixXd X;
This code is about 0.9 seconds.
解决方案
As you observed, your code is dominated by the matrix product that represents about 2.8e9 arithmetic operations. Yopu say that Matlab (or rather the highly optimized MKL) computes it in about 0.05s. This represents a rate of 57 GFLOPS showing that it is not only using vectorization but also multi-threading. With Eigen, you can enable multi-threading by compiling with OpenMP enabled (-fopenmp with gcc). On my 5 years old computer (2.66Ghz Core2), using floats and 4 threads, your product takes about 0.053s, and 0.16s without OpenMP, so there must be something wrong with your compilation flags. To summary, to get the best of Eigen:
compile in 64bits mode
use floats (doubles are twice as slow owing to vectorization)
enable OpenMP
if your CPU has hyper-threading, then either disable it or define the OMP_NUM_THREADS environment variable to the number of physical cores (this is very important, otherwise the performance will be very bad!)
if you have other task running, it might be a good idea to reduce OMP_NUM_THREADS to nb_cores-1
use the most recent compiler that you can, GCC, clang and ICC are best, MSVC is usually slower.