Bootstrap

二叉树的操作之统计二叉树中节点的个数

一,问题描述

给定一颗二叉树,已知其根结点。

①计算二叉树所有结点的个数

②计算二叉树中叶子结点的个数

③计算二叉树中满节点(度为2)的个数

 

二,算法分析

找出各个问题的基准条件,然后采用递归的方式实现。

①计算二叉树所有结点的个数

1)当树为空时,结点个数为0,否则为根节点个数 加上 根的左子树中节点个数 再加上 根的右子树中节点的个数

借助遍历二叉树的思路,每访问一个结点,计数增1。因此,可使用类似于先序遍历的思路来实现,代码如下:

 1     //计算树中节点个数
 2     private int nubmerOfNodes(BinaryNode<T> root){
 3         int nodes = 0;
 4         if(root == null)
 5             return 0;
 6         else{
 7             nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right);
 8         }
 9         return nodes;
10     }

计算树中节点个数的代码方法与计算树的高度的代码非常相似!

 

②计算叶子结点的个数

1)当树为空时,叶子结点个数为0

2)当某个节点的左右子树均为空时,表明该结点为叶子结点,返回1

3)当某个节点有左子树,或者有右子树时,或者既有左子树又有右子树时,说明该节点不是叶子结点,因此叶结点个数等于左子树中叶子结点个数 加上 右子树中叶子结点的个数

 

这种形式的递归返回的node值 是最外层方法的node。

 1     //计算树中叶结点的个数
 2     private int numberOfLeafs(BinaryNode<T> root){
 3         int nodes = 0;
 4         if(root == null)
 5             return 0;
 6         else if(root.left == null && root.right == null)
 7             return 1;
 8         else
 9             nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right);
10         return nodes;
11     }

 

③计算满节点的个数(对于二叉树而言,满节点是度为2的节点)

满节点的基准情况有点复杂:

1)当树为空时,满节点个数为0

2)当树中只有一个节点时,满节点个数为0

3)当某节点只有左子树时,需要进一步判断左子树中是否存在满节点

4)当某节点只有右子树时,需要进一步判断右子树中是否存在满节点

5)当某节点即有左子树,又有右子树时,说明它是满结点。但是由于它的左子树或者右子树中可能还存在满结点,因此满结点个数等于该节点加上该节点的左子树中满结点的个数 再加上 右子树中满结点的个数。

代码如下:

 1 //计算树中度为2的节点的个数--满节点的个数
 2     private int numberOfFulls(BinaryNode<T> root){
 3         int nodes = 0;
 4         if(root == null)
 5             return 0;
 6         else if(root.left == null && root.right == null)
 7             return 0;
 8         else if(root.left == null && root.right != null)
 9             nodes = numberOfFulls(root.right);
10         else if(root.left != 
;