澳大利亚在2008 - 2009年全球金融危机期间发生了这种情况。澳大利亚政府发布了一揽子刺激计划,其中包括2008年12月的现金支付,恰逢圣诞节支出。因此,零售商报告销售强劲,经济受到刺激。因此,收入增加了。
VAR面临的批评是他们是理论上的; 也就是说,它们不是建立在一些经济学理论的基础上,这些理论强加了方程式的理论结构。假设每个变量都影响系统中的每个其他变量,这使得估计系数的直接解释变得困难。尽管如此,VAR在几种情况下都很有用:
- 预测相关变量的集合,不需要明确的解释;
- 测试一个变量是否有助于预测另一个变量(格兰杰因果关系检验的基础);
- 脉冲响应分析,其中分析了一个变量对另一个变量的突然但暂时的变化的响应;
- 预测误差方差分解,其中每个变量的预测方差的比例归因于其他变量的影响。
示例:用于预测美国消费的VAR模型
library(vars)
VARselect(uschange[,1:2], lag.max=8,
type="const")[["selection"]]
#> AIC(n) HQ(n) SC(n) FPE(n)
#> 5 1 1 5
R输出显示由vars包中可用的每个信息标准选择的滞后长度。由AIC选择的VAR(5)与BIC选择的VAR(1&#