Bootstrap

【实操记录】mysql性能优化

1.mysql整个查询流程

1.与数据库服务器建立连接
2.查询缓存,有缓存直接返回,没有进入下一步。注意:只有在MySQL 8.0之前版本才有查询缓存,8.0之后查询缓存被优化掉了。
3.词法语法分析器
4.优化器,根据查询效率选择最佳执行方案
5.执行器,调用执行引擎
6.返回结果,并缓存查询结果
在这里插入图片描述

2.慢日志分析工具

mysqldumpslow:查看记录查询时间超过阈值(默认为10s)的语句。

2.1 mysqldumpslow

2.1.1 查看mysqldumpslow

mysql> show variables like '%slow_query_log%';
+---------------------+-----------------------------------+
| Variable_name       | Value                             |
+---------------------+-----------------------------------+
| slow_query_log      | OFF                               |
| slow_query_log_file | /var/lib/mysql/localhost-slow.log |
+---------------------+-----------------------------------+
2 rows in set (0.00 sec)

说明:
slow_query_log:慢日志开关
slow_query_log_file:慢日志文件存放路径

2.1.2 开启mysqldumpslow

mysql> set global slow_query_log=1;
Query OK, 0 rows affected (0.00 sec)

or

mysql> set global slow_query_log='on';
Query OK, 0 rows affected (0.00 sec)

2.1.3 关闭mysqldumpslow

mysql> set global slow_query_log=0;
Query OK, 0 rows affected (0.00 sec)

or

mysql> set global slow_query_log='off';
Query OK, 0 rows affected (0.00 sec)

2.1.4 查询慢查询定义的时间

mysql> show variables like '%long_query_time%';
+-----------------+-----------+
| Variable_name   | Value     |
+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+
1 row in set (0.00 sec)

2.1.5 设置慢查询定义的时间

mysql> set global long_query_time=1;
Query OK, 0 rows affected (0.00 sec)

注意
设置完后,需要重新开启一个客户端,才可以看到配置的改变

2.1.6 以上设置是临时配置,以下是永久配置文件

[root@localhost mysql]# vi /etc/my.cnf
#
# This group is read both both by the client and the server
# use it for options that affect everything
#
[client-server]

#
# include all files from the config directory
#
!includedir /etc/my.cnf.d

[mysqld]
# 慢查询配置
slow_query_log=1
slow_query_log_file=/var/lib/mysql/localhost-slow.log
long_query_time=1

说明
[mysqld] 这个一定要加,不然无效

2.1.7 慢日志查询

[root@localhost mysql]# mysqldumpslow -s at -t 20 /var/lib/mysql/localhost-slow.log
Reading mysql slow query log from /var/lib/mysql/localhost-slow.log
Count: 9  Time=0.30s (2s)  Lock=0.00s (0s)  Rows=143725.8 (1293532), remote[remote]@[192.168.40.2]
  SELECT * from employees_info

说明
-s:按照那种⽅式排序,取值:
 c:访问计数
 l:锁定时间
 r:返回记录
 al:平均锁定时间
 ar:平均访问记录数
 at:平均查询时间
-t:是top n 的意思,返回多少条数据。
-g:可以跟上正则匹配模式,⼤⼩写不敏感。

2.2 pt-query-digest

2.2.1 下载

wget http://www.percona.com/get/pt-query-digest
chmod +x pt-query-digest

2.2.2 使用

[root@localhost Utils]# ./pt-query-digest /var/lib/mysql/localhost-slow.log
# A software update is available:

# 50ms user time, 230ms system time, 40.50M rss, 119.50M vsz
# Current date: Sat Aug  5 20:54:42 2023
# Hostname: localhost.localdomain
# Files: /var/lib/mysql/localhost-slow.log
# Overall: 442 total, 46 unique, 0.03 QPS, 0.07x concurrency _____________
# Time range: 2023-08-05T08:24:58 to 2023-08-05T12:28:07
# Attribute          total     min     max     avg     95%  stddev  median
# ============     ======= ======= ======= ======= ======= ======= =======
# Exec time           982s     7us    869s      2s     5ms     40s   657us
# Lock time           74ms       0     3ms   168us   541us   256us   103us
# Rows sent          5.10M       0 976.56k  11.80k  463.90 101.80k    0.99
# Rows examine       5.11M       0 976.56k  11.84k  463.90 101.80k    5.75
# Query size        23.73k      11     983   54.97  202.40   84.30   28.75

# Profile
# Rank Query ID                            Response time  Calls R/Call   V
# ==== =================================== ============== ===== ======== =
#    1 0xAA783D4AE6C83F25F8E2F45C8CEE3EED  971.2776 98.9%     4 242.8194 50... CALL `batch_insert_data`
#    2 0x820E5CCD2963A2688B2CB66A8B559743   10.6056  1.1%    13   0.8158  1.09 SELECT employees_info
# MISC 0xMISC                                0.4248  0.0%   425   0.0010   0.0 <44 ITEMS>

# Query 1: 0.00 QPS, 0.33x concurrency, ID 0xAA783D4AE6C83F25F8E2F45C8CEE3EED at byte 108442
# This item is included in the report because it matches --limit.
# Scores: V/M = 500.16
# Time range: 2023-08-05T08:39:18 to 2023-08-05T09:28:58
# Attribute    pct   total     min     max     avg     95%  stddev  median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count          0       4
# Exec time     98    971s   373us    869s    243s    833s    348s    468s
# Lock time      0       0       0       0       0       0       0       0
# Rows sent      0       0       0       0       0       0       0       0
# Rows examine   0       0       0       0       0       0       0       0
# Query size     0     132      33      33      33      33       0      33
# String:
# Databases    test
# Hosts        192.168.40.2
# Users        remote
# Query_time distribution
#   1us
#  10us
# 100us  ################################################################
#   1ms
#  10ms
# 100ms
#    1s
#  10s+  ################################################################
CALL `batch_insert_data`(@number)\G

# Query 2: 0.00 QPS, 0.00x concurrency, ID 0x820E5CCD2963A2688B2CB66A8B559743 at byte 109308
# This item is included in the report because it matches --outliers.
# Scores: V/M = 1.09
# Time range: 2023-08-05T09:12:12 to 2023-08-05T12:28:07
# Attribute    pct   total     min     max     avg     95%  stddev  median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count          2      13
# Exec time      1     11s    10ms      2s   816ms      2s   941ms   160ms
# Lock time      2     2ms    78us   312us   131us   236us    64us   110us
# Rows sent     99   5.05M  11.66k 976.56k 397.65k 961.27k 451.34k  97.04k
# Rows examine  98   5.05M  11.66k 976.56k 397.65k 961.27k 451.34k  97.04k
# Query size     1     364      28      28      28      28       0      28
# String:
# Databases    test
# Hosts        192.168.40.2
# Users        remote
# Query_time distribution
#   1us
#  10us
# 100us
#   1ms
#  10ms  ################################################################
# 100ms  #####################
#    1s  #####################################################
#  10s+
# Tables
#    SHOW TABLE STATUS FROM `test` LIKE 'employees_info'\G
#    SHOW CREATE TABLE `test`.`employees_info`\G
# EXPLAIN /*!50100 PARTITIONS*/
SELECT * from employees_info\G

2.2.3 语法与选项

pt-query-digest [OPTIONS] [FILES] [DSN]

说明
–create-review-table 当使用–review参数把分析结果输出到表中时,如果没有表就自动创建。
–create-history-table 当使用–history参数把分析结果输出到表中时,如果没有表就自动创建。
–filter 对输入的慢查询按指定的字符串进行匹配过滤后再进行分析
–limit限制输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。
–host mysql服务器地址
–user mysql用户名
–password mysql用户密码
–history 将分析结果保存到表中,分析结果比较详细,下次再使用–history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。
–review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用–review时,如果存在相同的语句分析,就不会记录到数据表中。
–output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql slow log)、json、json-anon,一般使用report,以便于阅读。
–since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。
–until 截止时间,配合—since可以分析一段时间内的慢查询。

2.2.4 用法示例

1、直接分析慢查询文件:

pt-query-digest /var/lib/mysql/localhost-slow.log > slow_report.log

2、分析最近12小时内的查询:

pt-query-digest --since=12h /var/lib/mysql/localhost-slow.log > slow_report.log

3、分析指定时间范围内的查询:

pt-query-digest --since '2023-08-05 00:00:00' --until '2023-08-06 10:00:00'  /var/lib/mysql/localhost-slow.log > slow_report.log

4、分析只含有select语句的慢查询

pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i'  /var/lib/mysql/localhost-slow.log > slow_report.log

5、针对某个用户的慢查询

pt-query-digest --filter '($event->{user} || "") =~ m/^root/i'  /var/lib/mysql/localhost-slow.log > slow_report.log

6、查询所有所有的全表扫描或full join的慢查询

pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' /var/lib/mysql/localhost-slow.log > slow_report.log

7、把查询保存到test数据库的query_review表,如果没有的话会自动创建;

pt-query-digest --user=root –password=*** --review  h=localhost,D=test,t=query_review --create-review-table /var/lib/mysql/localhost-slow.log > slow_report.log

8、把查询保存到query_history表

pt-query-digest ---user=root –password=*** --review  h=localhost,D=test,t=query_history /var/lib/mysql/localhost-slow.log > slow_report.log

9、通过tcpdump抓取mysql的tcp协议数据,然后再分析

tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt
pt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log

10、分析binlog

# 原生方法
mysqlbinlog mysql-bin.000093 > mysql-bin000093.sql
# pt-query-digest
pt-query-digest  --type=binlog  mysql-bin000093.sql > slow_report10.log

11、分析general log

pt-query-digest  --type=genlog  localhost.log > slow_report11.log

3.快速插入批量数据

3.1创建存储过程

#定义分割符号,mysql 默认分割符为分号;  这里定义为 //
#分隔符的作用主要是告诉mysql遇到下一个 // 符号即执行上面这一整段sql语句
DELIMITER //

#创建一个存储过程,并命名为 batch_insert_data
CREATE PROCEDURE batch_insert_data(IN number INT)

#下面这段就是表示循环往表里插入10w条数据
BEGIN
  DECLARE i int;
  SET i=1;
  WHILE(i <= number)DO
    INSERT INTO employees_info (employee_no, name, sex, age, position, birthday, address, telphone,
cred_type, cerd_no, hire_time, create_time, update_time)
VALUES (i, 'LiLei', 'M', 32, 'manager', '1990-09-09', '上海市浦东新区⼴兰路1990弄09号', '13119900909',
'02', '310115199009098715', '2016-06-06', now(), now());
    SET i=i+1;
  END WHILE;
END //  #这里遇到//符号,即执行上面一整段sql语句
#恢复mysql分隔符为;

3.2 调用存储过程

mysql> call batch_insert_data(1000000);

4.explain

4.1 explain 定义

模拟优化器执⾏SQL 语句,分析查询语句或结构的性能瓶颈。
在select语句之前增加explain关键字,执⾏查询会返回执⾏计划的信
息,⽽不是执⾏这条SQL。

4.1.1 explain extended(MySQL5.7 及以前版本)

相⽐explain会多⼀个filtered列字段:是⼀个半分⽐的值,rows * filtered/100可以估算出将要和explain中前⼀个表进⾏连接的⾏数

注意:explain extended语法在MySQL 8.0版本不再⽀持,只需要执⾏explain+SQL 语句即可。

4.1.2 explain partitions(MySQL5.7 及以前版本)

相⽐explain会多⼀个partitions 字段:⽤于场景:基于分区表sql 分析,会显⽰查询将访问的分区。

注意:explain partitions语法在MySQL 8.0版本不再⽀持,只需要执⾏explain+SQL 语句即可。

4.1.3 show warnings

在explain语句后⾯紧跟show warnings 命令,可以得到优化后的查询语句,从⽽看出优化器优化了什么。

mysql> explain SELECT * from employees_info;
+----+-------------+----------------+------------+------+---------------+------+---------+------+--------+----------+-------+
| id | select_type | table          | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra |
+----+-------------+----------------+------------+------+---------------+------+---------+------+--------+----------+-------+
|  1 | SIMPLE      | employees_info | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 901674 |   100.00 | NULL  |
+----+-------------+----------------+------------+------+---------------+------+---------+------+--------+----------+-------+
1 row in set, 1 warning (0.00 sec)

mysql> show warnings;
+-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Level | Code | Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
+-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select `test`.`employees_info`.`employee_no` AS `employee_no`,`test`.`employees_info`.`name` AS `name`,`test`.`employees_info`.`sex` AS `sex`,`test`.`employees_info`.`age` AS `age`,`test`.`employees_info`.`position` AS `position`,`test`.`employees_info`.`birthday` AS `birthday`,`test`.`employees_info`.`address` AS `address`,`test`.`employees_info`.`telphone` AS `telphone`,`test`.`employees_info`.`cred_type` AS `cred_type`,`test`.`employees_info`.`cerd_no` AS `cerd_no`,`test`.`employees_info`.`hire_time` AS `hire_time`,`test`.`employees_info`.`create_time` AS `create_time`,`test`.`employees_info`.`update_time` AS `update_time` from `test`.`employees_info` |
+-------+------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

4.2 explain 字段解释

mysql> explain SELECT * from employees_info t where t.employee_no=9999; 
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref   | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | t     | NULL       | const | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | NULL  |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

4.2.1 id

表示执行顺序
数字越大越先执行
数字相同,按从上到下执行
null,最后执行

4.2.2 select_type

SIMPLE 、PRIMARY、DERIVED、SUBQUERY、UNION

mysql> explain SELECT * from employees_info t where t.employee_no=9999; 
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref   | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | t     | NULL       | const | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | NULL  |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

说明:
SIMPLE:简单查询。查询不包含⼦查询和union

mysql> set session optimizer_switch='derived_merge=off';
Query OK, 0 rows affected (0.00 sec)

mysql> #set session optimizer_switch='derived_merge=on';
mysql> explain select (select 1 from cust_info where cust_no = 1) from (select * from goods_info where goods_no =
    -> 1) der;
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table      | partitions | type   | possible_keys | key     | key_len | ref   | rows | filtered | Extra       |
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------------+
|  1 | PRIMARY     | <derived3> | NULL       | system | NULL          | NULL    | NULL    | NULL  |    1 |   100.00 | NULL        |
|  3 | DERIVED     | goods_info | NULL       | const  | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | NULL        |
|  2 | SUBQUERY    | cust_info  | NULL       | const  | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | Using index |
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------------+
3 rows in set, 1 warning (0.00 sec)

说明
set session optimizer_switch=‘derived_merge=off’; 关闭mysql5.7/8.0新特性对衍⽣表的合并优化
PRIMARY:复杂查询中最外层的select
SUBQUERY:包含在select 中的⼦查询(不在from⼦句中)
DERIVED::包含在from ⼦句中的⼦查询。MySQL会将结果存放在⼀个临时表中,也称为派⽣表(derived
的英⽂含义)

mysql> explain select 1 union all select 1;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra          |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
|  1 | PRIMARY     | NULL  | NULL       | NULL | NULL          | NULL | NULL    | NULL | NULL |     NULL | No tables used |
|  2 | UNION       | NULL  | NULL       | NULL | NULL          | NULL | NULL    | NULL | NULL |     NULL | No tables used |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
2 rows in set, 1 warning (0.00 sec)

说明
UNION :在union中的第⼆个和随后的select

4.2.3 table

table字段表⽰的是explain分析的当前SQL 正在访问的是哪个表。
当from⼦句中有⼦查询时,table字段是格式,表⽰当前查询依赖id=N的查询结果,于是先执
⾏id=N的查询。
当有union时,UNION RESULT 的table 字段的值为<union1, 2>,1和2表⽰参与union的select⾏id。

mysql> set session optimizer_switch='derived_merge=off';
Query OK, 0 rows affected (0.00 sec)

mysql> #set session optimizer_switch='derived_merge=on';
mysql> explain select (select 1 from cust_info where cust_no = 1) from (select * from goods_info where goods_no =
    -> 1) der;
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table      | partitions | type   | possible_keys | key     | key_len | ref   | rows | filtered | Extra       |
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------------+
|  1 | PRIMARY     | <derived3> | NULL       | system | NULL          | NULL    | NULL    | NULL  |    1 |   100.00 | NULL        |
|  3 | DERIVED     | goods_info | NULL       | const  | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | NULL        |
|  2 | SUBQUERY    | cust_info  | NULL       | const  | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | Using index |
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------------+
3 rows in set, 1 warning (0.00 sec)
mysql> EXPLAIN SELECT * from employees_info where employee_no between 10 and 1000 union SELECT * from employees_info where employee_no between 10000 and 1000000;
+----+--------------+----------------+------------+-------+---------------+---------+---------+------+--------+----------+-----------------+
| id | select_type  | table          | partitions | type  | possible_keys | key     | key_len | ref  | rows   | filtered | Extra           |
+----+--------------+----------------+------------+-------+---------------+---------+---------+------+--------+----------+-----------------+
|  1 | PRIMARY      | employees_info | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL |    991 |   100.00 | Using where     |
|  2 | UNION        | employees_info | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL | 450837 |   100.00 | Using where     |
| NULL | UNION RESULT | <union1,2>     | NULL       | ALL   | NULL          | NULL    | NULL    | NULL |   NULL |     NULL | Using temporary |
+----+--------------+----------------+------------+-------+---------------+---------+---------+------+--------+----------+-----------------+
3 rows in set, 1 warning (0.00 sec)

4.2.4 partitions

如果查询是基于分区表的话,partitions 字段会显⽰查询将访问的分区。

4.2.5 type(最重要)

从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL
⼀般来说,得保证查询达到range级别,最好达到ref
const:使用了主键或者唯一索引全部字段,获得最多一条数据
system:和const基本相同,衍生表使用了主键或者唯一索引全部字段,获得最多一条数据

mysql> set session optimizer_switch='derived_merge=off';
Query OK, 0 rows affected (0.00 sec)

mysql> use test;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> explain select * from (select * from goods_info where goods_no = 1) tmp;
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table      | partitions | type   | possible_keys | key     | key_len | ref   | rows | filtered | Extra |
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------+
|  1 | PRIMARY     | <derived2> | NULL       | system | NULL          | NULL    | NULL    | NULL  |    1 |   100.00 | NULL  |
|  2 | DERIVED     | goods_info | NULL       | const  | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | NULL  |
+----+-------------+------------+------------+--------+---------------+---------+---------+-------+------+----------+-------+
2 rows in set, 1 warning (0.01 sec)

eq_ref:关联表使用了主键或者唯一索引的全部字段


mysql> explain select * from order_info left join goods_info on order_info. goods_no = goods_info. goods_no;
+----+-------------+------------+------------+--------+---------------+---------+---------+--------------------------+------+----------+-------+
| id | select_type | table      | partitions | type   | possible_keys | key     | key_len | ref                      | rows | filtered | Extra |
+----+-------------+------------+------------+--------+---------------+---------+---------+--------------------------+------+----------+-------+
|  1 | SIMPLE      | order_info | NULL       | ALL    | NULL          | NULL    | NULL    | NULL                     |    3 |   100.00 | NULL  |
|  1 | SIMPLE      | goods_info | NULL       | eq_ref | PRIMARY       | PRIMARY | 4       | test.order_info.goods_no |    1 |   100.00 | NULL  |
+----+-------------+------------+------------+--------+---------------+---------+---------+--------------------------+------+----------+-------+
2 rows in set, 1 warning (0.00 sec)

ref:使用了非主键索引或者唯一索引的部分字段
range:范围查询
index:全索引查询
all:全表查询

小技巧
表查询顺序:衍生表(跟在from后)–>子查询(跟在select后)–>主表(最外层表,包括关联表)
依据表看字段:
如果字段是主键或者唯一索引全字段的等值比较,const
如果字段是主键或者唯一索引全字段的等值比较,在衍生表中,数据最多获取一条,最外层表,system
在关联查询中,如果字段是主键或者唯一索引全字段的等值比较,关联表,eq_ref
如果字段是非主键或者唯一索引字段的部分,ref
如果字段是在一个范围中,range
如果字段使用索引,但是没有条件限制,index
如果字段没使用索引,all

4.2.6 possible_keys

表⽰可能使⽤哪些索引来查找,但实际可能不⽤。
explain时可能出现possible_keys 有列,⽽key显⽰NULL的情况,这种情况是因为表中数据不多,mysql认为索引对此查询帮助不⼤,选择了全表查询。
如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查where⼦句看是否可以创造⼀个适当的索引来提⾼查询性能,然后⽤explain查看效果。

4.2.7 key

实际使用的索引。如果为 NULL,则没有使用索引。
如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 forceindex、ignore index。

4.2.8 key_len

表示索引中使用的字节数,查询中使用的索引的长度(最大可能长度),并非实际使用长度,理论上长度越短越好。key_len 是根据表定义计算而得的,不是通过表内检索出的。

key_len计算规则如下:
字符串:char(n)和varchar(n),5.0.3以后版本中,n均代表字符数,⽽不是字节数,如果是utf-8,⼀个数字或字⺟占1个字节,⼀个汉字占3个字节
  char(n):如果存汉字⻓度就是3n字节
  varchar(n):如果存汉字则⻓度是3n + 2字节,加的2字节⽤来存储字符串⻓度,因为varchar 是变⻓字符串
数值类型
  tinyint:1字节
  smallint:2字节
  int:4字节
  bigint:8字节
时间类型
  date:3字节
  timestamp:4字节
  datetime:8字节
如果字段允许为NULL,需要1字节记录是否为NULL
注意:索引最⼤⻓度是768字节,当字符串过⻓时,mysql会做⼀个类似左前缀索引的处理,将前半部分的字符提取出来做索引。

4.2.9 ref

显示索引的哪一列被使用了,如果可能的话,是一个常量 const。

4.2.10 rows

根据表统计信息及索引选用情况,大致估算出找到所需的记录所需要读取的行数。注意这个不是结果集里的行数。

4.2.11 filtered

显示了通过条件过滤出的行数的百分比估计值。

4.2.12 Extra

Using filesort:MySQL 需要额外的一次传递,以找出如何按排序顺序检索行。将用外部排序而不是索引排序,数据较小时从内存排序,否则需要在磁盘完成排序。这种情况下一般也是要考虑使用索引来优化的。
Using index:从只使用索引树中的信息而不需要进一步搜索读取实际的行来检索表中的列信息。(使用覆盖索引)
Using temporary:为了解决查询,MySQL 需要创建一个临时表来容纳结果。
Using where:WHERE 子句用于限制哪一个行匹配下一个表或发送到客户,并且查询的列未被索引覆盖
Impossible WHERE noticed after reading const tables:除了主键或者唯一索引全部字段,还有一个字段,导致查询不到数据,就会出现这个

5.优化技巧

最左前缀法则
尽量不要在索引列上做任何操作(计算、函数、(⾃动or ⼿动)类型转换),会导致索引失效⽽转向全表扫描
用日期函数转换的可以用范围查询
联合索引中尽量不要有范围查询
尽量使⽤覆盖索引(只访问索引的查询(索引列包含查询列)),减少select *语句
尽量不要使用不等于(!=或者<>)、not in、not exists,is null、is not null,可能会是索引失效
like 尽量不要将% 放前面,可能会使索引失效,解决办法覆盖索引
尽量不要用到数据类型转换,无论是自动的还是手动的,索引失效
少⽤or 或in,可能索引失效
范围查询没走索引的话,可以将数据拆开

6 参考资料

详解 慢查询 之 mysqldumpslow
MySQL—— MySQL的执行计划详解(Explain)

;