题目一(青蛙跳台阶):
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析:
假设只有一级台阶,则总共只有一种跳法;
假设有两级台阶,则总共有两种跳法;
假设有n级台阶,那么第一步就要分为跳一步和跳两步:
跳一步,那么接下来就是跳n-1;
跳两步,那么接下来就是跳n-2;
所以,总数可以认为是f(n-1)+f(n-2)。
主要代码:
def frog(num):
if num <= 2:
return num
t1, t2 = 1, 2
for _ in range(3, num+1):
t1, t2 = t2, t1+t2
return t2
题目二(变态跳台阶):
一只青蛙一次可以跳上1级台阶,也可以跳上2级......它也可以跳上n阶。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析:
相比之前的跳台阶,这次可以从任意台阶跳上n级,所以总体来看与上一个问题差不多,只不过递归公式应该是各个台阶之和再加上直接跳上去的情况,所以总数应该是f(n-1)+f(n-2)+f(n-3)+...+f(2)+f(1)=2**n-1。
主要代码:
def frog(num):
if num==0:
retur