Python的threading
基础用法, 通过 threading.Thread() 创建线程, 然后 start() 和 join()
import time
import threading
def do_something(seconds):
print('Sleeping...')
time.sleep(seconds)
print('Done')
start = time.perf_counter()
threads = []
for _ in range(10):
t = threading.Thread(target = do_something, args=[1])
t.start()
threads.append(t)
for t in threads:
t.join()
finish = time.perf_counter()
print('Total: {}'.format(round(finish - start, 2)))
使用线程池. 使用as_completed, 可以阻塞并按完成顺序输出结果, 而直接用executor.map()会将结果收集完成后一起返回.
import time
import threading
from concurrent import futures
def do_something(seconds):
print('Sleeping...')
time.sleep(seconds)
return 'Done ' + str(seconds)
start = time.perf_counter()
with futures.ThreadPoolExecutor(max_workers=3) as executor:
secs = [3, 2.5, 2, 2.2, 0.5]
results = [executor.submit(do_something, sec) for sec in secs]
for f in futures.as_completed(results):
print(f.result())
# 注意区别
with futures.ThreadPoolExecutor() as executor:
secs = [3, 2.5, 2, 2.2, 0.5]
# 下面这行实际是阻塞的
results = executor.map(do_something, secs)
for result in results:
print(result)
finish = time.perf_counter()
print('Total: {}'.format(round(finish - start, 2)))
.
Python的multiprocessing
.在使用multiprocessing时, 子进程里的print()是会滞后打印的.
import time
import multiprocessing
import logging
def do_something(seconds):
print('Sleeping...', seconds)
time.sleep(seconds)
return 'Done ' + str(seconds)
if __name__ == '__main__':
multiprocessing.log_to_stderr()
logger = multiprocessing.get_logger()
logger.setLevel(logging.INFO)
start = time.perf_counter()
secs = [3.1, 3.5, 3.1, 3.2, 3.5, 3.3]
processes = []
for sec in secs:
p = multiprocessing.Process(target=do_something, args=(sec,))
p.start()
processes.append(p)
for p in processes:
p.join()
finish = time.perf_counter()
print('Total: {}'.format(round(finish - start, 2)))
print()
pool = multiprocessing.Pool(processes=3)
print(pool.map(do_something, secs))
finish = time.perf_counter()
print('Total: {}'.format(round(finish - start, 2)))
.