Bootstrap

图解动态规划:最长上升子序列

最长上升子序列(300)

在上一篇中,我们了解了什么是DP(动态规划),并且通过DP中的经典问题 “最大子序和”,学习了状态转移方程应该如何定义。在本节中,我们将沿用之前的分析方法,通过一道例题,进一步巩固之前的内容!

01、题目分析

第300题:最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4 
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

说明:

  • 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。

这道题有一定难度哦!如果没有思路请回顾上一篇的学习内容!
不建议直接看题解!

02、题目图解

首先我们分析题目,要找的是最长上升子序列(Longest Increasing Subsequence,LIS)。因为题目中没有要求连续,所以 LIS可能是连续的,也可能是非连续的。 同时,LIS符合可以从其子问题的最优解来进行构建的条件。所以我们可以尝试用动态规划来进行求解。首先我们定义状态:


>
dp[i] :表示以nums[i]结尾的最长上升子序列的长度

我们假定nums为[1,9,5,9,3],如下图:

在这里插入图片描述

我们分两种情况进行讨论:

  • 如果nums[i]比前面的所有元素都小,那么dp[i]等于1(即它本身)(该结论正确)
  • 如果nums[i]前面存在比他小的元素nums[j]&#x
;