Bootstrap

Python提取COCO数据集中特定的类(亲测有效)

一、安装pycocotools
  1. 方法1,直接GitHub源码安装:

    pip install git+https://github.com/philferriere/cocoapi.git  #subdirectory=PythonAPI
    
  2. 方法2,安装COCOAPI【Linux版】:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    make
    python3.5 setup.py install --user  # 博主的Python版本为3.5,编译时改为自己对应版本
    

    如果在安装过程中出现:“pycocotools/_mask.c: No such file or directory” 错误,可参考: 解决编译 COCOAPI时出现的 “pycocotools/_mask.c: No such file or directory”错误

二、提取特定的类别

提取代码:

from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw
 
# 需要设置的路径
savepath="/path/to/generate/COCO/" 
img_dir=savepath+'images/'
anno_dir=savepath+'annotations/'
datasets_list=['train2017', 'val2017']

#coco有80类,这里写要提取类的名字,以person为例 
classes_names = ['person'] 
#包含所有类别的原coco数据集路径
'''
目录格式如下:
$COCO_PATH
----|annotations
----|train2017
----|val2017
----|test2017
'''
dataDir= '/path/to/coco_orgi/' 
 
headstr = """\
<annotation>
    <folder>VOC</folder>
    <filename>%s</filename>
    <source>
        <database>My Database</database>
        <annotation>COCO</annotation>
        <image>flickr</image>
        <flickrid>NULL</flickrid>
    </source>
    <owner>
        <flickrid>NULL</flickrid>
        <name>company</name>
    </owner>
    <size>
        <width>%d</width>
        <height>%d</height>
        <depth>%d</depth>
    </size>
    <segmented>0</segmented>
"""
objstr = """\
    <object>
        <name>%s</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>%d</xmin>
            <ymin>%d</ymin>
            <xmax>%d</xmax>
            <ymax>%d</ymax>
        </bndbox>
    </object>
"""
 
tailstr = '''\
</annotation>
'''
 
# 检查目录是否存在,如果存在,先删除再创建,否则,直接创建
def mkr(path):
    if not os.path.exists(path):
        os.makedirs(path)  # 可以创建多级目录

def id2name(coco):
    classes=dict()
    for cls in coco.dataset['categories']:
        classes[cls['id']]=cls['name']
    return classes
 
def write_xml(anno_path,head, objs, tail):
    f = open(anno_path, "w")
    f.write(head)
    for obj in objs:
        f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))
    f.write(tail)
 
 
def save_annotations_and_imgs(coco,dataset,filename,objs):
    #将图片转为xml,例:COCO_train2017_000000196610.jpg-->COCO_train2017_000000196610.xml
    dst_anno_dir = os.path.join(anno_dir, dataset)
    mkr(dst_anno_dir)
    anno_path=dst_anno_dir + '/' + filename[:-3]+'xml'
    img_path=dataDir+dataset+'/'+filename
    print("img_path: ", img_path)
    dst_img_dir = os.path.join(img_dir, dataset)
    mkr(dst_img_dir)
    dst_imgpath=dst_img_dir+ '/' + filename
    print("dst_imgpath: ", dst_imgpath)
    img=cv2.imread(img_path)
    #if (img.shape[2] == 1):
    #    print(filename + " not a RGB image")
     #   return
    shutil.copy(img_path, dst_imgpath)
 
    head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
    tail = tailstr
    write_xml(anno_path,head, objs, tail)
 
 
def showimg(coco,dataset,img,classes,cls_id,show=True):
    global dataDir
    I=Image.open('%s/%s/%s'%(dataDir,dataset,img['file_name']))
    #通过id,得到注释的信息
    annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
    # print(annIds)
    anns = coco.loadAnns(annIds)
    # print(anns)
    # coco.showAnns(anns)
    objs = []
    for ann in anns:
        class_name=classes[ann['category_id']]
        if class_name in classes_names:
            print(class_name)
            if 'bbox' in ann:
                bbox=ann['bbox']
                xmin = int(bbox[0])
                ymin = int(bbox[1])
                xmax = int(bbox[2] + bbox[0])
                ymax = int(bbox[3] + bbox[1])
                obj = [class_name, xmin, ymin, xmax, ymax]
                objs.append(obj)
                draw = ImageDraw.Draw(I)
                draw.rectangle([xmin, ymin, xmax, ymax])
    if show:
        plt.figure()
        plt.axis('off')
        plt.imshow(I)
        plt.show()
 
    return objs
 
for dataset in datasets_list:
    #./COCO/annotations/instances_train2017.json
    annFile='{}/annotations/instances_{}.json'.format(dataDir,dataset)
 
    #使用COCO API用来初始化注释数据
    coco = COCO(annFile)
 
    #获取COCO数据集中的所有类别
    classes = id2name(coco)
    print(classes)
    #[1, 2, 3, 4, 6, 8]
    classes_ids = coco.getCatIds(catNms=classes_names)
    print(classes_ids)
    for cls in classes_names:
        #获取该类的id
        cls_id=coco.getCatIds(catNms=[cls])
        img_ids=coco.getImgIds(catIds=cls_id)
        print(cls,len(img_ids))
        # imgIds=img_ids[0:10]
        for imgId in tqdm(img_ids):
            img = coco.loadImgs(imgId)[0]
            filename = img['file_name']
            # print(filename)
            objs=showimg(coco, dataset, img, classes,classes_ids,show=False)
            print(objs)
            save_annotations_and_imgs(coco, dataset, filename, objs)

该脚本执行完后会获得需要提取的特定类别的图片及其对应VOC格式的标注文件.xml。下面还需将生成的.xml文件转化为COCO格式的.json文件。

三、把VOC格式的标注文件.xml转为COCO格式的.json文件

转换代码如下:

import xml.etree.ElementTree as ET
import os
import json

coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []

category_set = dict()
image_set = set()

category_item_id = 0
image_id = 20180000000
annotation_id = 0

def addCatItem(name):
    global category_item_id
    category_item = dict()
    category_item['supercategory'] = 'none'
    category_item_id += 1
    category_item['id'] = category_item_id
    category_item['name'] = name
    coco['categories'].append(category_item)
    category_set[name] = category_item_id
    return category_item_id

def addImgItem(file_name, size):
    global image_id
    if file_name is None:
        raise Exception('Could not find filename tag in xml file.')
    if size['width'] is None:
        raise Exception('Could not find width tag in xml file.')
    if size['height'] is None:
        raise Exception('Could not find height tag in xml file.')
    image_id += 1
    image_item = dict()
    image_item['id'] = image_id
    image_item['file_name'] = file_name
    image_item['width'] = size['width']
    image_item['height'] = size['height']
    coco['images'].append(image_item)
    image_set.add(file_name)
    return image_id

def addAnnoItem(object_name, image_id, category_id, bbox):
    global annotation_id
    annotation_item = dict()
    annotation_item['segmentation'] = []
    seg = []
    #bbox[] is x,y,w,h
    #left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    #left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    #right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    #right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])

    annotation_item['segmentation'].append(seg)

    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['ignore'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_id += 1
    annotation_item['id'] = annotation_id
    coco['annotations'].append(annotation_item)

def parseXmlFiles(xml_path): 
    for f in os.listdir(xml_path):
        if not f.endswith('.xml'):
            continue
        
        bndbox = dict()
        size = dict()
        current_image_id = None
        current_category_id = None
        file_name = None
        size['width'] = None
        size['height'] = None
        size['depth'] = None

        xml_file = os.path.join(xml_path, f)
        print(xml_file)

        tree = ET.parse(xml_file)
        root = tree.getroot()
        if root.tag != 'annotation':
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))

        #elem is <folder>, <filename>, <size>, <object>
        for elem in root:
            current_parent = elem.tag
            current_sub = None
            object_name = None
            
            if elem.tag == 'folder':
                continue
            
            if elem.tag == 'filename':
                file_name = elem.text
                if file_name in category_set:
                    raise Exception('file_name duplicated')
                
            #add img item only after parse <size> tag
            elif current_image_id is None and file_name is not None and size['width'] is not None:
                if file_name not in image_set:
                    current_image_id = addImgItem(file_name, size)
                    print('add image with {} and {}'.format(file_name, size))
                else:
                    raise Exception('duplicated image: {}'.format(file_name)) 
            #subelem is <width>, <height>, <depth>, <name>, <bndbox>
            for subelem in elem:
                bndbox ['xmin'] = None
                bndbox ['xmax'] = None
                bndbox ['ymin'] = None
                bndbox ['ymax'] = None
                
                current_sub = subelem.tag
                if current_parent == 'object' and subelem.tag == 'name':
                    object_name = subelem.text
                    if object_name not in category_set:
                        current_category_id = addCatItem(object_name)
                    else:
                        current_category_id = category_set[object_name]

                elif current_parent == 'size':
                    if size[subelem.tag] is not None:
                        raise Exception('xml structure broken at size tag.')
                    size[subelem.tag] = int(subelem.text)

                #option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
                for option in subelem:
                    if current_sub == 'bndbox':
                        if bndbox[option.tag] is not None:
                            raise Exception('xml structure corrupted at bndbox tag.')
                        bndbox[option.tag] = int(option.text)

                #only after parse the <object> tag
                if bndbox['xmin'] is not None:
                    if object_name is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_image_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_category_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    bbox = []
                    #x
                    bbox.append(bndbox['xmin'])
                    #y
                    bbox.append(bndbox['ymin'])
                    #w
                    bbox.append(bndbox['xmax'] - bndbox['xmin'])
                    #h
                    bbox.append(bndbox['ymax'] - bndbox['ymin'])
                    print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id, bbox))
                    addAnnoItem(object_name, current_image_id, current_category_id, bbox )


if __name__ == '__main__':
    # 需要自己设定的地址,一个是已生成的是xml文件的父目录;一个是要生成的json文件的目录
    xml_dir = r'/path/to/generate/COCO/annotations'
    json_dir = r'/path/to/save/COCO/annotations'
    dataset_lists = ['train2017', 'val2017']
    for dataset in dataset_lists:
        xml_path = os.path.join(xml_dir, dataset)
        json_file = json_dir + '/instances_{}.json'.format(dataset)
        parseXmlFiles(xml_path)
        json.dump(coco, open(json_file, 'w'))

原参考脚本不支持划分训练集和测试集,只能单个文件进行转换,本脚本对此进行了简单完善。获得特定类别的图像和对应json文件后,即可使用新获取的数据集对特定目标检测网络进行训练。

参考文献:
;