Bootstrap

图像去噪算法综述

图像降噪算法总结

分析各种算法的优点和缺点

1、BM3D 降噪
2、DCT 降噪
3、PCA 降噪
4、K-SVD 降噪
5、非局部均值降噪
6、WNNM 降噪
7、基于主成分分析和双边滤波的图像降噪算法
8、小波变换
9、小波阈值降噪
10、Contourlet 变换
11、基于平移不变 Contourlet 变换的 SAR 图像降噪
**

1、BM3D 降噪
BM3D 是一种降噪方法提高了图像在变换域的稀疏表示。BM3D 降噪方法的优点是更好的保留图像中的一些细节,BM3D采用了不同的去噪策略。通过搜索相似块并在变换域进行滤波,得到块评估值,最后对图像中每个点进行加权得到最终去噪效果。 
原理:首先将一幅图像分割成尺寸较小的小像素片,选定参考片后,寻找与参考片相似的小片组成 3D 块。此过程过后将得到 3D 块。然后将所有相似块进行 3D 变换。将变换后的 3D 块进行阈值收缩,这也是除去噪声的过程。然后进行 3D 逆变换。最后将所有的 3D 块通过加权平均后还原到图像中。
BM3D算法的大致流程:
第1步. 初始估计
(1)逐块估计。对含噪图像中的每一块 
 (i)分组。找到它的相似块然后把它们聚集到一个三维数组。 
(ii)联合硬阈值。对形成的三维数组进行三维变换,通过对变换域的系数进行硬阈值处理减弱噪声,然后逆变换得到组中所有图像块的估计值,然后把这些估计值返回到他们的原始位置。
(2)聚集。对得到的有重叠的块估计,通过对他们进行加权

;