专栏导读
🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手
🏳️🌈 博客主页:请点击——> 一晌小贪欢的博客主页求关注
👍 该系列文章专栏:请点击——>Python办公自动化专栏求订阅
🕷 此外还有爬虫专栏:请点击——>Python爬虫基础专栏求订阅
📕 此外还有python基础专栏:请点击——>Python基础学习专栏求订阅
文章作者技术和水平有限,如果文中出现错误,希望大家能指正🙏
❤️ 欢迎各位佬关注! ❤️
库的介绍
Pyecharts介绍
Pyecharts是一个基于Echarts的Python可视化库,可以用Python语言轻松地生成各种交互式图表和地图。它支持多种图表类型,包括折线图、柱状图、散点图、饼图、地图等,并且可以通过简单的API调用实现数据可视化。
Pyecharts的优点包括:
- 简单易用:Pyecharts提供了简单易用的API,可以轻松地生成各种图表和地图。
- 丰富的图表类型:Pyecharts支持多种图表类型,包括折线图、柱状图、散点图、饼图、地图等。
- 交互式可视化:Pyecharts生成的图表可以进行交互式操作,包括缩放、拖拽、数据筛选等。
- 支持多种数据格式:Pyecharts支持多种数据格式,包括CSV、JSON、Excel等。
- 可扩展性强:Pyecharts可以与其他Python库和框架集成,如Pandas、Flask、Django等。
总之,Pyecharts是一个功能强大、易于使用的Python可视化库,可以帮助开发者快速生成各种交互式图表和地图。可以帮助开发者快速生成各种交互式图表和地图
库的安装
pip install pyecharts -i https://pypi.tuna.tsinghua.edu.cn/simple/
1、柱状图(防止x轴标签名过长)
可加参数如下参数,进行旋转
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15))
from pyecharts import options as opts
from pyecharts.charts import Bar
c = (
Bar()
.add_xaxis(
[
"1月xxxxxxxxxxxx",
"2月xxxxxxxxxxxx",
"3月xxxxxxxxxxxx",
"4月xxxxxxxxxxxx",
"5月xxxxxxxxxxxx",
"6月xxxxxxxxxxxx",
]
)
.add_yaxis("商家A", [10, 20, 30, 40, 50, 40])
.add_yaxis("商家B", [20, 10, 40, 30, 40, 50])
.set_global_opts(
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
title_opts=opts.TitleOpts(title="Bar-旋转X轴标签", subtitle="解决标签名字过长的问题"),
)
.render("bar_rotate_xaxis_label.html")
)
2、柱状图—堆叠样式
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values(), stack="stack1")
.add_yaxis("商家B", Faker.values(), stack="stack1")
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-堆叠数据(全部)"))
.render("bar_stack0.html")
)
3、复合型柱状图
import pyecharts.options as opts
from pyecharts.charts import Timeline, Bar, Pie
"""
Gallery 使用 pyecharts 1.1.0
参考地址: https://echarts.apache.org/examples/editor.html?c=mix-timeline-finance
目前无法实现的功能:
1、暂无
"""
total_data = {}
name_list = ["北京", "天津", "河北", "山西", "内蒙古", "辽宁", "吉林", "黑龙江", "上海", "江苏", "浙江", "安徽", "福建",
"江西", "山东", "河南", "湖北", "湖南", "广东", "广西", "海南", "重庆", "四川", "贵州", "云南", "西藏",
"陕西", "甘肃", "青海", "宁夏", "新疆",
]
data_gdp = {
2011: [16251.93, 11307.28, 24515.76, 11237.55, 14359.88, 22226.7, 10568.83, 12582, 19195.69, 49110.27, 32318.85,
15300.65, 17560.18, 11702.82, 45361.85, 26931.03, 19632.26, 19669.56, 53210.28, 11720.87, 2522.66, 10011.37,
21026.68, 5701.84, 8893.12, 605.83, 12512.3, 5020.37, 1670.44, 2102.21, 6610.05,
],
2010: [14113.58, 9224.46, 20394.26, 9200.86, 11672, 18457.27, 8667.58, 10368.6, 17165.98, 41425.48, 27722.31,
12359.33, 14737.12, 9451.26, 39169.92, 23092.36, 15967.61, 16037.96, 46013.06, 9569.85, 2064.5, 7925.58,
17185.48, 4602.16, 7224.18, 507.46, 10123.48, 4120.75, 1350.43, 1689.65, 5437.47,
],
2009: [12153.03, 7521.85, 17235.48, 7358.31, 9740.25, 15212.49, 7278.75, 8587, 15046.45, 34457.3, 22990.35,
10062.82, 12236.53, 7655.18, 33896.65, 19480.46, 12961.1, 13059.69, 39482.56, 7759.16, 1654.21, 6530.01,
14151.28, 3912.68, 6169.75, 441.36, 8169.8, 3387.56, 1081.27, 1353.31, 4277.05,
],
2008: [11115, 6719.01, 16011.97, 7315.4, 8496.2, 13668.58, 6426.1, 8314.37, 14069.87, 30981.98, 21462.69, 8851.66,
10823.01, 6971.05, 30933.28, 18018.53, 11328.92, 11555, 36796.71, 7021, 1503.06, 5793.66, 12601.23, 3561.56,
5692.12, 394.85, 7314.58, 3166.82, 1018.62, 1203.92, 4183.21,
],
2007: [9846.81, 5252.76, 13607.32, 6024.45, 6423.18, 11164.3, 5284.69, 7104, 12494.01, 26018.48, 18753.73, 7360.92,
9248.53, 5800.25, 25776.91, 15012.46, 9333.4, 9439.6, 31777.01, 5823.41, 1254.17, 4676.13, 10562.39, 2884.11,
4772.52, 341.43, 5757.29, 2703.98, 797.35, 919.11, 3523.16,
],
2006: [8117.78, 4462.74, 11467.6, 4878.61, 4944.25, 9304.52, 4275.12, 6211.8, 10572.24, 21742.05, 15718.47, 6112.5,
7583.85, 4820.53, 21900.19, 12362.79, 7617.47, 7688.67, 26587.76, 4746.16, 1065.67, 3907.23, 8690.24,
2338.98, 3988.14, 290.76, 4743.61, 2277.35, 648.5, 725.9, 3045.26,
],
2005: [6969.52, 3905.64, 10012.11, 4230.53, 3905.03, 8047.26, 3620.27, 5513.7, 9247.66, 18598.69, 13417.68, 5350.17,
6554.69, 4056.76, 18366.87, 10587.42, 6590.19, 6596.1, 22557.37, 3984.1, 918.75, 3467.72, 7385.1, 2005.42,
3462.73, 248.8, 3933.72, 1933.98, 543.32, 612.61, 2604.19,
],
2004: [6033.21, 3110.97, 8477.63, 3571.37, 3041.07, 6672, 3122.01, 4750.6, 8072.83, 15003.6, 11648.7, 4759.3,
5763.35, 3456.7, 15021.84, 8553.79, 5633.24, 5641.94, 18864.62, 3433.5, 819.66, 3034.58, 6379.63, 1677.8,
3081.91, 220.34, 3175.58, 1688.49, 466.1, 537.11, 2209.09,
],
2003: [5007.21, 2578.03, 6921.29, 2855.23, 2388.38, 6002.54, 2662.08, 4057.4, 6694.23, 12442.87, 9705.02, 3923.11,
4983.67, 2807.41, 12078.15, 6867.7, 4757.45, 4659.99, 15844.64, 2821.11, 713.96, 2555.72, 5333.09, 1426.34,
2556.02, 185.09, 2587.72, 1399.83, 390.2, 445.36, 1886.35,
],
2002: [4315, 2150.76, 6018.28, 2324.8, 1940.94, 5458.22, 2348.54, 3637.2, 5741.03, 10606.85, 8003.67, 3519.72,
4467.55, 2450.48, 10275.5, 6035.48, 4212.82, 4151.54, 13502.42, 2523.73, 642.73, 2232.86, 4725.01, 1243.43,
2312.82, 162.04, 2253.39, 1232.03, 340.65, 377.16, 1612.6,
],
}
data_pi = {
2011: [136.27, 159.72, 2905.73, 641.42, 1306.3, 1915.57, 1277.44, 1701.5, 124.94, 3064.78, 1583.04, 2015.31,
1612.24, 1391.07, 3973.85, 3512.24, 2569.3, 2768.03, 2665.2, 2047.23, 659.23, 844.52, 2983.51, 726.22,
1411.01, 74.47, 1220.9, 678.75, 155.08, 184.14, 1139.03,
],
2010: [124.36, 145.58, 2562.81, 554.48, 1095.28, 1631.08, 1050.15, 1302.9, 114.15, 2540.1, 1360.56, 1729.02,
1363.67, 1206.98, 3588.28, 3258.09, 2147, 2325.5, 2286.98, 1675.06, 539.83, 685.38, 2482.89, 625.03, 1108.38,
68.72, 988.45, 599.28, 134.92, 159.29, 1078.63,
],
2009: [118.29, 128.85, 2207.34, 477.59, 929.6, 1414.9, 980.57, 1154.33, 113.82, 2261.86, 1163.08, 1495.45, 1182.74,
1098.66, 3226.64, 2769.05, 1795.9, 1969.69, 2010.27, 1458.49, 462.19, 606.8, 2240.61, 550.27, 1067.6, 63.88,
789.64, 497.05, 107.4, 127.25, 759.74,
],
2008: [112.83, 122.58, 2034.59, 313.58, 907.95, 1302.02, 916.72, 1088.94, 111.8, 2100.11, 1095.96, 1418.09, 1158.17,
1060.38, 3002.65, 2658.78, 1780, 1892.4, 1973.05, 1453.75, 436.04, 575.4, 2216.15, 539.19, 1020.56, 60.62,
753.72, 462.27, 105.57, 118.94, 691.07,
],
2007: [101.26, 110.19, 1804.72, 311.97, 762.1, 1133.42, 783.8, 915.38, 101.84, 1816.31, 986.02, 1200.18, 1002.11,
905.77, 2509.14, 2217.66, 1378, 1626.48, 1695.57, 1241.35, 361.07, 482.39, 2032, 446.38, 837.35, 54.89,
592.63, 387.55, 83.41, 97.89, 628.72,
],
2006: [88.8, 103.35, 1461.81, 276.77, 634.94, 939.43, 672.76, 750.14, 93.81, 1545.05, 925.1, 1011.03, 865.98,
786.14, 2138.9, 1916.74, 1140.41, 1272.2, 1532.17, 1032.47, 323.48, 386.38, 1595.48, 382.06, 724.4, 50.9,
484.81, 334, 67.55, 79.54, 527.8,
],
2005: [88.68, 112.38, 1400, 262.42, 589.56, 882.41, 625.61, 684.6, 90.26, 1461.51, 892.83, 966.5, 827.36, 727.37,
1963.51, 1892.01, 1082.13, 1100.65, 1428.27, 912.5, 300.75, 463.4, 1481.14, 368.94, 661.69, 48.04, 435.77,
308.06, 65.34, 72.07, 509.99,
],
2004: [87.36, 105.28, 1370.43, 276.3, 522.8, 798.43, 568.69, 605.79, 83.45, 1367.58, 814.1, 950.5, 786.84, 664.5,
1778.45, 1649.29, 1020.09, 1022.45, 1248.59, 817.88, 278.76, 428.05, 1379.93, 334.5, 607.75, 44.3, 387.88,
286.78, 60.7, 65.33, 461.26,
],
2003: [84.11, 89.91, 1064.05, 215.19, 420.1, 615.8, 488.23, 504.8, 81.02, 1162.45, 717.85, 749.4, 692.94, 560,
1480.67, 1198.7, 798.35, 886.47, 1072.91, 658.78, 244.29, 339.06, 1128.61, 298.69, 494.6, 40.7, 302.66,
237.91, 48.47, 55.63, 412.9,
],
2002: [82.44, 84.21, 956.84, 197.8, 374.69, 590.2, 446.17, 474.2, 79.68, 1110.44, 685.2, 783.66, 664.78, 535.98,
1390, 1288.36, 707, 847.25, 1015.08, 601.99, 222.89, 317.87, 1047.95, 281.1, 463.44, 39.75, 282.21, 215.51,
47.31, 52.95, 305,
],
}
data_si = {
2011: [3752.48, 5928.32, 13126.86, 6635.26, 8037.69, 12152.15, 5611.48, 5962.41, 7927.89, 25203.28, 16555.58,
8309.38, 9069.2, 6390.55, 24017.11, 15427.08, 9815.94, 9361.99, 26447.38, 5675.32, 714.5, 5543.04, 11029.13,
2194.33, 3780.32, 208.79, 6935.59, 2377.83, 975.18, 1056.15, 3225.9,
],
2010: [3388.38, 4840.23, 10707.68, 5234, 6367.69, 9976.82, 4506.31, 5025.15, 7218.32, 21753.93, 14297.93, 6436.62,
7522.83, 5122.88, 21238.49, 13226.38, 7767.24, 7343.19, 23014.53, 4511.68, 571, 4359.12, 8672.18, 1800.06,
3223.49, 163.92, 5446.1, 1984.97, 744.63, 827.91, 2592.15,
],
2009: [2855.55, 3987.84, 8959.83, 3993.8, 5114, 7906.34, 3541.92, 4060.72, 6001.78, 18566.37, 11908.49, 4905.22,
6005.3, 3919.45, 18901.83, 11010.5, 6038.08, 5687.19, 19419.7, 3381.54, 443.43, 3448.77, 6711.87, 1476.62,
2582.53, 136.63, 4236.42, 1527.24, 575.33, 662.32, 1929.59,
],
2008: [2626.41, 3709.78, 8701.34, 4242.36, 4376.19, 7158.84, 3097.12, 4319.75, 6085.84, 16993.34, 11567.42, 4198.93,
5318.44, 3554.81, 17571.98, 10259.99, 5082.07, 5028.93, 18502.2, 3037.74, 423.55, 3057.78, 5823.39, 1370.03,
2452.75, 115.56, 3861.12, 1470.34, 557.12, 609.98, 2070.76,
],
2007: [2509.4, 2892.53, 7201.88, 3454.49, 3193.67, 5544.14, 2475.45, 3695.58, 5571.06, 14471.26, 10154.25, 3370.96,
4476.42, 2975.53, 14647.53, 8282.83, 4143.06, 3977.72, 16004.61, 2425.29, 364.26, 2368.53, 4648.79, 1124.79,
2038.39, 98.48, 2986.46, 1279.32, 419.03, 455.04, 1647.55,
],
2006: [2191.43, 2457.08, 6110.43, 2755.66, 2374.96, 4566.83, 1915.29, 3365.31, 4969.95, 12282.89, 8511.51, 2711.18,
3695.04, 2419.74, 12574.03, 6724.61, 3365.08, 3187.05, 13469.77, 1878.56, 308.62, 1871.65, 3775.14, 967.54,
1705.83, 80.1, 2452.44, 1043.19, 331.91, 351.58, 1459.3,
],
2005: [2026.51, 2135.07, 5271.57, 2357.04, 1773.21, 3869.4, 1580.83, 2971.68, 4381.2, 10524.96, 7164.75, 2245.9,
3175.92, 1917.47, 10478.62, 5514.14, 2852.12, 2612.57, 11356.6, 1510.68, 240.83, 1564, 3067.23, 821.16,
1426.42, 63.52, 1951.36, 838.56, 264.61, 281.05, 1164.79,
],
2004: [1853.58, 1685.93, 4301.73, 1919.4, 1248.27, 3061.62, 1329.68, 2487.04, 3892.12, 8437.99, 6250.38, 1844.9,
2770.49, 1566.4, 8478.69, 4182.1, 2320.6, 2190.54, 9280.73, 1253.7, 205.6, 1376.91, 2489.4, 681.5, 1281.63,
52.74, 1553.1, 713.3, 211.7, 244.05, 914.47,
],
2003: [1487.15, 1337.31, 3417.56, 1463.38, 967.49, 2898.89, 1098.37, 2084.7, 3209.02, 6787.11, 5096.38, 1535.29,
2340.82, 1204.33, 6485.05, 3310.14, 1956.02, 1777.74, 7592.78, 984.08, 175.82, 1135.31, 2014.8, 569.37,
1047.66, 47.64, 1221.17, 572.02, 171.92, 194.27, 719.54,
],
2002: [1249.99, 1069.08, 2911.69, 1134.31, 754.78, 2609.85, 943.49, 1843.6, 2622.45, 5604.49, 4090.48, 1337.04,
2036.97, 941.77, 5184.98, 2768.75, 1709.89, 1523.5, 6143.4, 846.89, 148.88, 958.87, 1733.38, 481.96, 934.88,
32.72, 1007.56, 501.69, 144.51, 153.06, 603.15,
],
}
data_ti = {
2011: [12363.18, 5219.24, 8483.17, 3960.87, 5015.89, 8158.98, 3679.91, 4918.09, 11142.86, 20842.21, 14180.23,
4975.96, 6878.74, 3921.2, 17370.89, 7991.72, 7247.02, 7539.54, 24097.7, 3998.33, 1148.93, 3623.81, 7014.04,
2781.29, 3701.79, 322.57, 4355.81, 1963.79, 540.18, 861.92, 2245.12,
],
2010: [10600.84, 4238.65, 7123.77, 3412.38, 4209.03, 6849.37, 3111.12, 4040.55, 9833.51, 17131.45, 12063.82,
4193.69, 5850.62, 3121.4, 14343.14, 6607.89, 6053.37, 6369.27, 20711.55, 3383.11, 953.67, 2881.08, 6030.41,
2177.07, 2892.31, 274.82, 3688.93, 1536.5, 470.88, 702.45, 1766.69,
],
2009: [9179.19, 3405.16, 6068.31, 2886.92, 3696.65, 5891.25, 2756.26, 3371.95, 8930.85, 13629.07, 9918.78, 3662.15,
5048.49, 2637.07, 11768.18, 5700.91, 5127.12, 5402.81, 18052.59, 2919.13, 748.59, 2474.44, 5198.8, 1885.79,
2519.62, 240.85, 3143.74, 1363.27, 398.54, 563.74, 1587.72,
],
2008: [8375.76, 2886.65, 5276.04, 2759.46, 3212.06, 5207.72, 2412.26, 2905.68, 7872.23, 11888.53, 8799.31, 3234.64,
4346.4, 2355.86, 10358.64, 5099.76, 4466.85, 4633.67, 16321.46, 2529.51, 643.47, 2160.48, 4561.69, 1652.34,
2218.81, 218.67, 2699.74, 1234.21, 355.93, 475, 1421.38,
],
2007: [7236.15, 2250.04, 4600.72, 2257.99, 2467.41, 4486.74, 2025.44, 2493.04, 6821.11, 9730.91, 7613.46, 2789.78,
3770, 1918.95, 8620.24, 4511.97, 3812.34, 3835.4, 14076.83, 2156.76, 528.84, 1825.21, 3881.6, 1312.94,
1896.78, 188.06, 2178.2, 1037.11, 294.91, 366.18, 1246.89,
],
2006: [5837.55, 1902.31, 3895.36, 1846.18, 1934.35, 3798.26, 1687.07, 2096.35, 5508.48, 7914.11, 6281.86, 2390.29,
3022.83, 1614.65, 7187.26, 3721.44, 3111.98, 3229.42, 11585.82, 1835.12, 433.57, 1649.2, 3319.62, 989.38,
1557.91, 159.76, 1806.36, 900.16, 249.04, 294.78, 1058.16,
],
2005: [4854.33, 1658.19, 3340.54, 1611.07, 1542.26, 3295.45, 1413.83, 1857.42, 4776.2, 6612.22, 5360.1, 2137.77,
2551.41, 1411.92, 5924.74, 3181.27, 2655.94, 2882.88, 9772.5, 1560.92, 377.17, 1440.32, 2836.73, 815.32,
1374.62, 137.24, 1546.59, 787.36, 213.37, 259.49, 929.41,
],
2004: [4092.27, 1319.76, 2805.47, 1375.67, 1270, 2811.95, 1223.64, 1657.77, 4097.26, 5198.03, 4584.22, 1963.9,
2206.02, 1225.8, 4764.7, 2722.4, 2292.55, 2428.95, 8335.3, 1361.92, 335.3, 1229.62, 2510.3, 661.8, 1192.53,
123.3, 1234.6, 688.41, 193.7, 227.73, 833.36,
],
2003: [3435.95, 1150.81, 2439.68, 1176.65, 1000.79, 2487.85, 1075.48, 1467.9, 3404.19, 4493.31, 3890.79, 1638.42,
1949.91, 1043.08, 4112.43, 2358.86, 2003.08, 1995.78, 7178.94, 1178.25, 293.85, 1081.35, 2189.68, 558.28,
1013.76, 96.76, 1063.89, 589.91, 169.81, 195.46, 753.91,
],
2002: [2982.57, 997.47, 2149.75, 992.69, 811.47, 2258.17, 958.88, 1319.4, 3038.9, 3891.92, 3227.99, 1399.02, 1765.8,
972.73, 3700.52, 1978.37, 1795.93, 1780.79, 6343.94, 1074.85, 270.96, 956.12, 1943.68, 480.37, 914.5, 89.56,
963.62, 514.83, 148.83, 171.14, 704.5,
],
}
data_estate = {
2011: [12363.18, 5219.24, 8483.17, 3960.87, 5015.89, 8158.98, 3679.91, 4918.09, 11142.86, 20842.21, 14180.23,
4975.96, 6878.74, 3921.2, 17370.89, 7991.72, 7247.02, 7539.54, 24097.7, 3998.33, 1148.93, 3623.81, 7014.04,
2781.29, 3701.79, 322.57, 4355.81, 1963.79, 540.18, 861.92, 2245.12,
],
2010: [10600.84, 4238.65, 7123.77, 3412.38, 4209.03, 6849.37, 3111.12, 4040.55, 9833.51, 17131.45, 12063.82,
4193.69, 5850.62, 3121.4, 14343.14, 6607.89, 6053.37, 6369.27, 20711.55, 3383.11, 953.67, 2881.08, 6030.41,
2177.07, 2892.31, 274.82, 3688.93, 1536.5, 470.88, 702.45, 1766.69,
],
2009: [9179.19, 3405.16, 6068.31, 2886.92, 3696.65, 5891.25, 2756.26, 3371.95, 8930.85, 13629.07, 9918.78, 3662.15,
5048.49, 2637.07, 11768.18, 5700.91, 5127.12, 5402.81, 18052.59, 2919.13, 748.59, 2474.44, 5198.8, 1885.79,
2519.62, 240.85, 3143.74, 1363.27, 398.54, 563.74, 1587.72,
],
2008: [8375.76, 2886.65, 5276.04, 2759.46, 3212.06, 5207.72, 2412.26, 2905.68, 7872.23, 11888.53, 8799.31, 3234.64,
4346.4, 2355.86, 10358.64, 5099.76, 4466.85, 4633.67, 16321.46, 2529.51, 643.47, 2160.48, 4561.69, 1652.34,
2218.81, 218.67, 2699.74, 1234.21, 355.93, 475, 1421.38,
],
2007: [7236.15, 2250.04, 4600.72, 2257.99, 2467.41, 4486.74, 2025.44, 2493.04, 6821.11, 9730.91, 7613.46, 2789.78,
3770, 1918.95, 8620.24, 4511.97, 3812.34, 3835.4, 14076.83, 2156.76, 528.84, 1825.21, 3881.6, 1312.94,
1896.78, 188.06, 2178.2, 1037.11, 294.91, 366.18, 1246.89,
],
2006: [5837.55, 1902.31, 3895.36, 1846.18, 1934.35, 3798.26, 1687.07, 2096.35, 5508.48, 7914.11, 6281.86, 2390.29,
3022.83, 1614.65, 7187.26, 3721.44, 3111.98, 3229.42, 11585.82, 1835.12, 433.57, 1649.2, 3319.62, 989.38,
1557.91, 159.76, 1806.36, 900.16, 249.04, 294.78, 1058.16,
],
2005: [4854.33, 1658.19, 3340.54, 1611.07, 1542.26, 3295.45, 1413.83, 1857.42, 4776.2, 6612.22, 5360.1, 2137.77,
2551.41, 1411.92, 5924.74, 3181.27, 2655.94, 2882.88, 9772.5, 1560.92, 377.17, 1440.32, 2836.73, 815.32,
1374.62, 137.24, 1546.59, 787.36, 213.37, 259.49, 929.41,
],
2004: [4092.27, 1319.76, 2805.47, 1375.67, 1270, 2811.95, 1223.64, 1657.77, 4097.26, 5198.03, 4584.22, 1963.9,
2206.02, 1225.8, 4764.7, 2722.4, 2292.55, 2428.95, 8335.3, 1361.92, 335.3, 1229.62, 2510.3, 661.8, 1192.53,
123.3, 1234.6, 688.41, 193.7, 227.73, 833.36,
],
2003: [3435.95, 1150.81, 2439.68, 1176.65, 1000.79, 2487.85, 1075.48, 1467.9, 3404.19, 4493.31, 3890.79, 1638.42,
1949.91, 1043.08, 4112.43, 2358.86, 2003.08, 1995.78, 7178.94, 1178.25, 293.85, 1081.35, 2189.68, 558.28,
1013.76, 96.76, 1063.89, 589.91, 169.81, 195.46, 753.91,
],
2002: [2982.57, 997.47, 2149.75, 992.69, 811.47, 2258.17, 958.88, 1319.4, 3038.9, 3891.92, 3227.99, 1399.02, 1765.8,
972.73, 3700.52, 1978.37, 1795.93, 1780.79, 6343.94, 1074.85, 270.96, 956.12, 1943.68, 480.37, 914.5, 89.56,
963.62, 514.83, 148.83, 171.14, 704.5,
],
}
data_financial = {
2011: [12363.18, 5219.24, 8483.17, 3960.87, 5015.89, 8158.98, 3679.91, 4918.09, 11142.86, 20842.21, 14180.23,
4975.96, 6878.74, 3921.2, 17370.89, 7991.72, 7247.02, 7539.54, 24097.7, 3998.33, 1148.93, 3623.81, 7014.04,
2781.29, 3701.79, 322.57, 4355.81, 1963.79, 540.18, 861.92, 2245.12,
],
2010: [10600.84, 4238.65, 7123.77, 3412.38, 4209.03, 6849.37, 3111.12, 4040.55, 9833.51, 17131.45, 12063.82,
4193.69, 5850.62, 3121.4, 14343.14, 6607.89, 6053.37, 6369.27, 20711.55, 3383.11, 953.67, 2881.08, 6030.41,
2177.07, 2892.31, 274.82, 3688.93, 1536.5, 470.88, 702.45, 1766.69,
],
2009: [9179.19, 3405.16, 6068.31, 2886.92, 3696.65, 5891.25, 2756.26, 3371.95, 8930.85, 13629.07, 9918.78, 3662.15,
5048.49, 2637.07, 11768.18, 5700.91, 5127.12, 5402.81, 18052.59, 2919.13, 748.59, 2474.44, 5198.8, 1885.79,
2519.62, 240.85, 3143.74, 1363.27, 398.54, 563.74, 1587.72,
],
2008: [8375.76, 2886.65, 5276.04, 2759.46, 3212.06, 5207.72, 2412.26, 2905.68, 7872.23, 11888.53, 8799.31, 3234.64,
4346.4, 2355.86, 10358.64, 5099.76, 4466.85, 4633.67, 16321.46, 2529.51, 643.47, 2160.48, 4561.69, 1652.34,
2218.81, 218.67, 2699.74, 1234.21, 355.93, 475, 1421.38,
],
2007: [7236.15, 2250.04, 4600.72, 2257.99, 2467.41, 4486.74, 2025.44, 2493.04, 6821.11, 9730.91, 7613.46, 2789.78,
3770, 1918.95, 8620.24, 4511.97, 3812.34, 3835.4, 14076.83, 2156.76, 528.84, 1825.21, 3881.6, 1312.94,
1896.78, 188.06, 2178.2, 1037.11, 294.91, 366.18, 1246.89,
],
2006: [5837.55, 1902.31, 3895.36, 1846.18, 1934.35, 3798.26, 1687.07, 2096.35, 5508.48, 7914.11, 6281.86, 2390.29,
3022.83, 1614.65, 7187.26, 3721.44, 3111.98, 3229.42, 11585.82, 1835.12, 433.57, 1649.2, 3319.62, 989.38,
1557.91, 159.76, 1806.36, 900.16, 249.04, 294.78, 1058.16,
],
2005: [4854.33, 1658.19, 3340.54, 1611.07, 1542.26, 3295.45, 1413.83, 1857.42, 4776.2, 6612.22, 5360.1, 2137.77,
2551.41, 1411.92, 5924.74, 3181.27, 2655.94, 2882.88, 9772.5, 1560.92, 377.17, 1440.32, 2836.73, 815.32,
1374.62, 137.24, 1546.59, 787.36, 213.37, 259.49, 929.41,
],
2004: [4092.27, 1319.76, 2805.47, 1375.67, 1270, 2811.95, 1223.64, 1657.77, 4097.26, 5198.03, 4584.22, 1963.9,
2206.02, 1225.8, 4764.7, 2722.4, 2292.55, 2428.95, 8335.3, 1361.92, 335.3, 1229.62, 2510.3, 661.8, 1192.53,
123.3, 1234.6, 688.41, 193.7, 227.73, 833.36,
],
2003: [3435.95, 1150.81, 2439.68, 1176.65, 1000.79, 2487.85, 1075.48, 1467.9, 3404.19, 4493.31, 3890.79, 1638.42,
1949.91, 1043.08, 4112.43, 2358.86, 2003.08, 1995.78, 7178.94, 1178.25, 293.85, 1081.35, 2189.68, 558.28,
1013.76, 96.76, 1063.89, 589.91, 169.81, 195.46, 753.91,
],
2002: [2982.57, 997.47, 2149.75, 992.69, 811.47, 2258.17, 958.88, 1319.4, 3038.9, 3891.92, 3227.99, 1399.02, 1765.8,
972.73, 3700.52, 1978.37, 1795.93, 1780.79, 6343.94, 1074.85, 270.96, 956.12, 1943.68, 480.37, 914.5, 89.56,
963.62, 514.83, 148.83, 171.14, 704.5,
],
}
def format_data(data: dict) -> dict:
for year in range(2002, 2012):
max_data, sum_data = 0, 0
temp = data[year]
max_data = max(temp)
for i in range(len(temp)):
sum_data += temp[i]
data[year][i] = {"name": name_list[i], "value": temp[i]}
data[str(year) + "max"] = int(max_data / 100) * 100
data[str(year) + "sum"] = sum_data
return data
# GDP
total_data["dataGDP"] = format_data(data=data_gdp)
# 第一产业
total_data["dataPI"] = format_data(data=data_pi)
# 第二产业
total_data["dataSI"] = format_data(data=data_si)
# 第三产业
total_data["dataTI"] = format_data(data=data_ti)
# 房地产
total_data["dataEstate"] = format_data(data=data_estate)
# 金融
total_data["dataFinancial"] = format_data(data=data_financial)
#####################################################################################
# 2002 - 2011 年的数据
def get_year_overlap_chart(year: int) -> Bar:
bar = (
Bar()
.add_xaxis(xaxis_data=name_list)
.add_yaxis(
series_name="GDP",
y_axis=total_data["dataGDP"][year],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="金融",
y_axis=total_data["dataFinancial"][year],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="房地产",
y_axis=total_data["dataEstate"][year],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="第一产业",
y_axis=total_data["dataPI"][year],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="第二产业",
y_axis=total_data["dataSI"][year],
label_opts=opts.LabelOpts(is_show=False),
)
.add_yaxis(
series_name="第三产业",
y_axis=total_data["dataTI"][year],
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(
title_opts=opts.TitleOpts(
title="{}全国宏观经济指标".format(year), subtitle="数据来自国家统计局"
),
tooltip_opts=opts.TooltipOpts(
is_show=True, trigger="axis", axis_pointer_type="shadow"
),
legend_opts=opts.LegendOpts(
selected_map={
"GDP": False,
"金融": False,
"房地产": False,
}
),
)
)
pie = (
Pie()
.add(
series_name="GDP占比",
data_pair=[
["第一产业", total_data["dataPI"]["{}sum".format(year)]],
["第二产业", total_data["dataSI"]["{}sum".format(year)]],
["第三产业", total_data["dataTI"]["{}sum".format(year)]],
],
center=["75%", "35%"],
radius="28%",
)
.set_series_opts(tooltip_opts=opts.TooltipOpts(is_show=True, trigger="item"))
)
return bar.overlap(pie)
# 生成时间轴的图
timeline = Timeline()
for y in range(2002, 2012):
timeline.add(get_year_overlap_chart(year=y), time_point=str(y))
# 1.0.0 版本的 add_schema 暂时没有补上 return self 所以只能这么写着
timeline.add_schema(is_auto_play=True, play_interval=1000)
timeline.render("finance_indices_2002.html")
4、柱状图—字典型
from pyecharts.charts import Bar
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType
c = (
Bar({"theme": ThemeType.MACARONS})
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.set_global_opts(
title_opts={"text": "Bar-通过 dict 进行配置", "subtext": "我也是通过 dict 进行配置的"}
)
.render("bar_base_dict_config.html")
)
总结
-
希望对初学者有帮助
-
致力于办公自动化的小小程序员一枚
-
希望能得到大家的【一个免费关注】!感谢
-
求个 🤞 关注 🤞
-
此外还有办公自动化专栏,欢迎大家订阅:Python办公自动化专栏
-
求个 ❤️ 喜欢 ❤️
-
此外还有爬虫专栏,欢迎大家订阅:Python爬虫基础专栏
-
求个 👍 收藏 👍
-
此外还有Python基础专栏,欢迎大家订阅:Python基础学习专栏