目录
2、第二步从kafka中获取数据信息,写了一个自定义方法getStreamingContextFromHBase
3、第三步、消费数据,解析数据并将数据存入hbase不同的表中和redis中
4、第四步提交消费的kafka的偏移量到 hbase的表中进行管理
使用flume采集我们的日志数据,然后将数据放入到kafka当中去,通过sparkStreaming消费我们的kafka当中的数据,然后将数据保存到hbase,并且将海口数据保存到redis当中去,实现实时轨迹监控以及历史轨迹回放的功能
为了模拟数据的实时生成,我们可以通过数据回放程序来实现订单数据的回放功能
1、模拟数据生成
1、海口订单数据上传
将海口数据上传到node01服务器的/kkb/datas/sourcefile这个路径下,node01执行以下命令创建文件夹,然后上传数据
mkdir -p /kkb/datas/sourcefile
2、成都轨迹日志数据
将成都数据上传到node02服务器的/kkb/datas/sourcefile这个路径下node02执行以下命令创建文件夹,然后上传数据
mkdir -p /kkb/datas/sourcefile
3、因为没有实际应用,所以写一个脚本,对数据不断复制追加
在node01服务器的/home/hadoop/bin路径下创建shell脚本,用于数据的回放
cd /home/hadoop/bin
vim start_stop_generate_data.sh
#!/bin/bash
scp /home/hadoop/FileOperate-1.0-SNAPSHOT-jar-with-dependencies.jar node02:/home/hadoop/
#休眠时间控制
sleepTime=1000
if [ ! -n "$2" ];then
echo ""
else
sleepTime=$2
fi
case $1 in
"start" ){
for i in node01 node02
do
echo "-----------$i启动数据回放--------------"
ssh $i "source /etc/profile;nohup java -jar /home/hadoop/FileOperate-1.0-SNAPSHOT-jar-with-dependencies.jar /kkb/datas/sourcefile /kkb/datas/destfile $2 > /dev/null 2>&1 & "
done
};;
"stop"){
for i in node02 node01
do
echo "-----------停止 $i 数据回放-------------"
ssh $i "source /etc/profile; ps -ef | grep FileOperate-1.0-SNAPSHOT-jar | grep -v grep |awk '{print \$2}' | xargs kill"
done
};;
esac
脚本赋权
cd /home/hadoop/bin
chmod 777 start_stop_generate_data.sh
启动脚本
sh start_stop_generate_data.sh start 3000
停止脚本
sh start_stop_generate_data.sh stop
2、flume采集数据
逻辑机构如下
1、node01配置flume的conf文件
cd /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/conf/
vim flume_client.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
#配置source
a1.sources.r1.type = taildir
a1.sources.r1.positionFile = /kkb/datas/flume_temp/flume_posit/haikou.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /kkb/datas/destfile/part.+
a1.sources.r1.fileHeader = true
a1.sources.r1.channels = c1
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定## 义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = hai_kou_gps_topic
#flume监听轨迹文件内容的变化 tuch gps
#配置sink
#a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
#flume监听的文件数据发送到此kafka的主题当中
#a1.sinks.k1.topic = hai_kou_gps_topic
#a1.sinks.k1.brokerList= node01:9092,node02:9092,node03:9092
#a1.sinks.k1.batchSize = 20
#a1.sinks.k1.requiredAcks = 1
#a1.sinks.k1.producer.linger.ms = 1
#配置sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node03
a1.sinks.k1.port = 41414
#配置channel
a1.channels.c1.type = file
#检查点文件目录
a1.channels.c1.checkpointDir=/kkb/datas/flume_temp/flume_check
#缓存数据文件夹
a1.channels.c1.dataDirs=/kkb/datas/flume_temp/flume_cache
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
sources:文件数据来源
channels: 文件数据通道
sinks :文件数据输出
其中关键的就是在sources配置过滤器,方便node03数据集中处理的时候将不同的数据,分配给不同的kafka的topic
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定## 义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = hai_kou_gps_topic
2、node02开发flume的配置文件
cd /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/conf/
vim flume_client.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
#配置source
a1.sources.r1.type = taildir
a1.sources.r1.positionFile = /kkb/datas/flume_temp/flume_posit/chengdu.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /kkb/datas/destfile/part.+
a1.sources.r1.fileHeader = true
a1.sources.r1.channels = c1
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定## 义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = cheng_du_gps_topic
#flume监听轨迹文件内容的变化 tuch gps
#配置sink
#a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
#flume监听的文件数据发送到此kafka的主题当中
#a1.sinks.k1.topic = cheng_du_gps_topic
#a1.sinks.k1.brokerList= node01:9092,node02:9092,node03:9092
#a1.sinks.k1.batchSize = 20
#a1.sinks.k1.requiredAcks = 1
#a1.sinks.k1.producer.linger.ms = 1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node03
a1.sinks.k1.port = 41414
#配置channel
a1.channels.c1.type = file
#检查点文件目录
a1.channels.c1.checkpointDir=/kkb/datas/flume_temp/flume_check
#缓存数据文件夹
a1.channels.c1.dataDirs=/kkb/datas/flume_temp/flume_cache
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
关键配置信息
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定## 义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = cheng_du_gps_topic
3、node03开发flume的配置文件
cd /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/conf/
vim flume2kafka.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
#定义source
a1.sources.r1.type = avro
a1.sources.r1.bind = node03
a1.sources.r1.port =41414
#添加时间拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
#定义channels
#配置channel
a1.channels.c1.type = file
#检查点文件目录
a1.channels.c1.checkpointDir=/kkb/datas/flume_temp/flume_check
#缓存数据文件夹
a1.channels.c1.dataDirs=/kkb/datas/flume_temp/flume_cache
#定义sink
#flume监听轨迹文件内容的变化 tuch gps
#配置sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
flume监听的文件数据发送到此kafka的主题当中
a1.sinks.k1.topic = %{type}
a1.sinks.k1.brokerList= node01:9092,node02:9092,node03:9092
a1.sinks.k1.batchSize = 20
a1.sinks.k1.requiredAcks = 1
a1.sinks.k1.producer.linger.ms = 1
#组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
将 传入信息的key为type的value值,作为sink数据输出端kafka的topic
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
flume监听的文件数据发送到此kafka的主题当中
a1.sinks.k1.topic = %{type}
4、开发flume启动停止脚本
cd /home/hadoop/bin/
vim flume_start_stop.sh
#!/bin/bash
case $1 in
"start" ){
for i in node03 node02 node01
do
echo "-----------启动 $i 采集flume-------------"
if [ "node03" = $i ];then
ssh $i "source /etc/profile;nohup /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/bin/flume-ng agent -n a1 -c /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/conf -f /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/conf/flume2kafka.conf -Dflume.root.logger=info,console > /dev/null 2>&1 & "
else
ssh $i "source /etc/profile;nohup /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/bin/flume-ng agent -n a1 -c /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/conf -f /kkb/install/apache-flume-1.6.0-cdh5.14.2-bin/conf/flume_client.conf -Dflume.root.logger=info,console > /dev/null 2>&1 & "
fi
done
};;
"stop"){
for i in node03 node02 node01
do
echo "-----------停止 $i 采集flume-------------"
ssh $i "source /etc/profile; ps -ef | grep flume | grep -v grep |awk '{print \$2}' | xargs kill"
done
};;
esac
chmod 777 flume_start_stop.sh
开启flume脚本
sh flume_start_stop.sh start
停止flume脚本
sh flume_start_stop.sh stop
5、node01执行以下命令创建kafka的topic
cd /kkb/install/kafka/
bin/kafka-topics.sh --create --zookeeper node01:2181 --replication-factor 2 --partitions 9 --topic cheng_du_gps_topic
bin/kafka-topics.sh --create --zookeeper node01:2181 --replication-factor 2 --partitions 9 --topic hai_kou_gps_topic
6、启动并查看kafka的数据
node01执行以下命令启动订单回放脚本
cd /home/hadoop/bin/
sh start_stop_generate_data.sh start 3000
node01启动flume采集数据脚本
cd /home/hadoop/bin/
sh flume_start_stop.sh start
消费数据
cd /kkb/install/kafka/
bin/kafka-console-consumer.sh --topic cheng_du_gps_topic --zookeeper node01:2181,node02:2181,node03:2181
成都kafka消费数据
bin/kafka-console-consumer.sh --topic hai_kou_gps_topic --zookeeper node01:2181,node02:2181,node03:2181
海口kafka消费数据
3、SparkStreaming消费kafka中的数据
主要程序如下
package com.travel.programApp import java.util.regex.Pattern import com.travel.common.{ConfigUtil, Constants, HBaseUtil, JedisUtil} import com.travel.utils.HbaseTools import org.apache.hadoop.hbase.{Cell, CellUtil, HColumnDescriptor, HTableDescriptor, TableName} import org.apache.hadoop.hbase.client.{Admin, Connection, Get, Result, Table} import org.apache.hadoop.hbase.util.Bytes import org.apache.kafka.clients.consumer.ConsumerRecord import org.apache.kafka.common.TopicPartition import org.apache.kafka.common.serialization.StringDeserializer import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SparkSession import org.apache.spark.streaming.dstream.InputDStream import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.kafka010.{CanCommitOffsets, ConsumerStrategies, ConsumerStrategy, HasOffsetRanges, KafkaUtils, LocationStrategies, OffsetRange} import redis.clients.jedis.Jedis import scala.collection.mutable object StreamingKafka { def main(args: Array[String]): Unit = { val brokers = ConfigUtil.getConfig(Constants.KAFKA_BOOTSTRAP_SERVERS) //KAFKA_BOOTSTRAP_SERVERS=node01:9092,node02:9092,node03:9092 val topics = Array(ConfigUtil.getConfig(Constants.CHENG_DU_GPS_TOPIC), ConfigUtil.getConfig(Constants.HAI_KOU_GPS_TOPIC)) val conf = new SparkConf().setMaster("local[1]").setAppName("sparkKafka") val group: String = "gps_consum_group" // "bootstrap.servers" -> brokers, val kafkaParams = Map[String, Object]( "bootstrap.servers" -> brokers, "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> group, "auto.offset.reset" -> "latest", // earliest,latest,和none "enable.auto.commit" -> (false: java.lang.Boolean) ) val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate() val context: SparkContext = sparkSession.sparkContext context.setLogLevel("WARN") // val streamingContext = new StreamingContext(conf,Seconds(5)) //获取streamingContext val streamingContext: StreamingContext = new StreamingContext(context, Seconds(1)) //sparkStreaming消费kafka的数据,然后将offset维护保存到hbase里面去 //第一步从kafak当中获取数据 val result: InputDStream[ConsumerRecord[String, String]] = HbaseTools.getStreamingContextFromHBase(streamingContext, kafkaParams, topics, group, "(.*)gps_topic") //第二步:将数据保存到hbase以及redis里面去 result.foreachRDD(eachRdd => { if (!eachRdd.isEmpty()) { eachRdd.foreachPartition(eachPartition => { val connection: Connection = HBaseUtil.getConnection val jedis: Jedis = JedisUtil.getJedis //判断表是否存在,如果不存在就进行创建 val admin: Admin = connection.getAdmin if (!admin.tableExists(TableName.valueOf(Constants.HTAB_GPS))) { /** * 一般Hbase创建表,代码结构如下 * TableName myuser = TableName.valueOf("myuser"); * HTableDescriptor hTableDescriptor = new HTableDescriptor(myuser); * //指定一个列族 * HColumnDescriptor f1 = new HColumnDescriptor("f1"); * hTableDescriptor.addFamily(f1); * admin.createTable(hTableDescriptor); */ val htabgps = new HTableDescriptor(TableName.valueOf(Constants.HTAB_GPS)) htabgps.addFamily(new HColumnDescriptor(Constants.DEFAULT_FAMILY)) admin.createTable(htabgps) } //判断海口的GPS表是否存在,如果不存在则创建表 if (!admin.tableExists(TableName.valueOf(Constants.HTAB_HAIKOU_ORDER))) { val htabgps = new HTableDescriptor(TableName.valueOf(Constants.HTAB_HAIKOU_ORDER)) htabgps.addFamily(new HColumnDescriptor(Constants.DEFAULT_FAMILY)) admin.createTable(htabgps) } //通过循环遍历分区的数据,将每个分区当中的每一条数据都获取出来 eachPartition.foreach(record => { val consumerRecord: ConsumerRecord[String, String] = HbaseTools.saveToHBaseAndRedis(connection, jedis, record) }) JedisUtil.returnJedis(jedis) connection.close() }) //获取到消费完成的offset的偏移量 val offsetRanges: Array[OffsetRange] = eachRdd.asInstanceOf[HasOffsetRanges].offsetRanges //将offset保存到hbase里面去,默认可以手动提交保存到kafak的一个topic里面去 //将offset保存到kafak里面去 // result.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges) for (eachrange <- offsetRanges) { val startOffset: Long = eachrange.fromOffset val endOffset: Long = eachrange.untilOffset val topic: String = eachrange.topic val partition: Int = eachrange.partition //将offset保存到hbase里面去 HbaseTools.saveBatchOffset(group, topic, partition + "", endOffset) } } }) streamingContext.start() streamingContext.awaitTermination() } }
1、第一步sparkStreaming的连接
标准的基础连接,kafkaParams 为kafka的消费基础信息
val brokers = ConfigUtil.getConfig(Constants.KAFKA_BOOTSTRAP_SERVERS) //KAFKA_BOOTSTRAP_SERVERS=node01:9092,node02:9092,node03:9092 val topics = Array(ConfigUtil.getConfig(Constants.CHENG_DU_GPS_TOPIC), ConfigUtil.getConfig(Constants.HAI_KOU_GPS_TOPIC)) val conf = new SparkConf().setMaster("local[1]").setAppName("sparkKafka") val group: String = "gps_consum_group" val kafkaParams = Map[String, Object]( "bootstrap.servers" -> brokers, "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> group, "auto.offset.reset" -> "latest", // earliest,latest,和none "enable.auto.commit" -> (false: java.lang.Boolean) ) val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate() val context: SparkContext = sparkSession.sparkContext context.setLogLevel("WARN") // val streamingContext = new StreamingContext(conf,Seconds(5)) //获取streamingContext val streamingContext: StreamingContext = new StreamingContext(context, Seconds(1))
2、第二步从kafka中获取数据信息,写了一个自定义方法getStreamingContextFromHBase
val result: InputDStream[ConsumerRecord[String, String]] = HbaseTools.getStreamingContextFromHBase(streamingContext, kafkaParams, topics, group, "(.*)gps_topic")
1、获取hbase中存储的偏移量信息
2、对应的偏移量,获取对应的value数据信息
def getStreamingContextFromHBase(streamingContext: StreamingContext, kafkaParams: Map[String, Object], topics: Array[String], group: String, matchPattern: String): InputDStream[ConsumerRecord[String, String]] = { val connection: Connection = getHbaseConn val admin: Admin = connection.getAdmin //拿取到HBASE的存偏移量的表hbase_offset_store的偏移量数据,TopicPartition, Long组成的hashMap集合,Long表示偏移量位置 //TopicPartition里面封装的有参构造器封装的 topic 主题和partition分区 var getOffset: collection.Map[TopicPartition, Long] = HbaseTools.getOffsetFromHBase(connection, admin, topics, group) //如果偏移量数组大于0,则证明是以前被消费过的,所以多传一个参数,传入偏移量的值 val result = if (getOffset.size > 0) { val consumerStrategy: ConsumerStrategy[String, String] = ConsumerStrategies.SubscribePattern[String, String](Pattern.compile(matchPattern), kafkaParams, getOffset) val value: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(streamingContext, LocationStrategies.PreferConsistent, consumerStrategy) //streamingContext streaming上下文对象 //LocationStrategies.PreferConsistent:数据本地性策略 //consumerStrategy消费策略 value //返回streaming获取到kafka的真实value值 } else { val consumerStrategy: ConsumerStrategy[String, String] = ConsumerStrategies.SubscribePattern[String, String](Pattern.compile(matchPattern), kafkaParams) val value: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream(streamingContext, LocationStrategies.PreferConsistent, consumerStrategy) value } admin.close() connection.close() result }
getHbaseConn方法,hbase连接的方法
def getHbaseConn: Connection = { try { // GlobalConfigUtils.getProp("hbase.master")自定义的配置信息 val config: Configuration = HBaseConfiguration.create() config.set("hbase.zookeeper.quorum", GlobalConfigUtils.getProp("hbase.zookeeper.quorum")) // config.set("hbase.master" , GlobalConfigUtils.getProp("hbase.master")) config.set("hbase.zookeeper.property.clientPort", GlobalConfigUtils.getProp("hbase.zookeeper.property.clientPort")) // config.set("hbase.rpc.timeout" , GlobalConfigUtils.rpcTimeout) // config.set("hbase.client.operator.timeout" , GlobalConfigUtils.operatorTimeout) // config.set("hbase.client.scanner.timeout.period" , GlobalConfigUtils.scannTimeout) // config.set("hbase.client.ipc.pool.size","200"); val connection = ConnectionFactory.createConnection(config) connection } catch { case exception: Exception => error(exception.getMessage) error("HBase获取连接失败") null } }
3、第三步、消费数据,解析数据并将数据存入hbase不同的表中和redis中
//将数据保存到hbase以及redis里面去 result.foreachRDD(eachRdd => { if (!eachRdd.isEmpty()) { eachRdd.foreachPartition(eachPartition => { val connection: Connection = HBaseUtil.getConnection val jedis: Jedis = JedisUtil.getJedis //判断表是否存在,如果不存在就进行创建 val admin: Admin = connection.getAdmin if (!admin.tableExists(TableName.valueOf(Constants.HTAB_GPS))) { /** * 一般Hbase创建表,代码结构如下 * TableName myuser = TableName.valueOf("myuser"); * HTableDescriptor hTableDescriptor = new HTableDescriptor(myuser); * //指定一个列族 * HColumnDescriptor f1 = new HColumnDescriptor("f1"); * hTableDescriptor.addFamily(f1); * admin.createTable(hTableDescriptor); */ val htabgps = new HTableDescriptor(TableName.valueOf(Constants.HTAB_GPS)) htabgps.addFamily(new HColumnDescriptor(Constants.DEFAULT_FAMILY)) admin.createTable(htabgps) } //判断海口的GPS表是否存在,如果不存在则创建表 if (!admin.tableExists(TableName.valueOf(Constants.HTAB_HAIKOU_ORDER))) { val htabgps = new HTableDescriptor(TableName.valueOf(Constants.HTAB_HAIKOU_ORDER)) htabgps.addFamily(new HColumnDescriptor(Constants.DEFAULT_FAMILY)) admin.createTable(htabgps) } //通过循环遍历分区的数据,将每个分区当中的每一条数据都获取出来 eachPartition.foreach(record => { val consumerRecord: ConsumerRecord[String, String] = HbaseTools.saveToHBaseAndRedis(connection, jedis, record) }) JedisUtil.returnJedis(jedis) connection.close() })
存入redis或者hbase的方法
通过逗号隔开判断数据长度,进而判断数据是成都GPS日志数据还是海口订单数据
// 成都的数据如下 // 18901e5f392c5ad98d24c296dcb0afe4,0003a1ceaf2979d0bdeff58da7665a41,1475976805,104.05368,30.70332 // 海口的数据如下 // dwv_order_make_haikou_1.order_id dwv_order_make_haikou_1.product_id dwv_order_make_haikou_1.city_id dwv_order_make_haikou_1.district dwv_order_make_haikou_1.county dwv_order_make_haikou_1.type dwv_order_make_haikou_1.combo_type dwv_order_make_haikou_1.traffic_type dwv_order_make_haikou_1.passenger_count dwv_order_make_haikou_1.driver_product_id dwv_order_make_haikou_1.start_dest_distance dwv_order_make_haikou_1.arrive_time dwv_order_make_haikou_1.departure_time dwv_order_make_haikou_1.pre_total_fee dwv_order_make_haikou_1.normal_time dwv_order_make_haikou_1.bubble_trace_id dwv_order_make_haikou_1.product_1level dwv_order_make_haikou_1.dest_lng dwv_order_make_haikou_1.dest_lat dwv_order_make_haikou_1.starting_lng dwv_order_make_haikou_1.starting_lat dwv_order_make_haikou_1.year dwv_order_make_haikou_1.month dwv_order_make_haikou_1.day // 17592719043682 3 83 0898 460107 0 0 0 4 3 4361 2017-05-19 01:09:12 2017-05-19 01:05:19 13 11 10466d3f609cb938dd153738103b0303 3 110.3645 20.0353 110.3665 20.0059 2017 05 19 // 下面是成都的数据,成都的数据才有逗号,才能分组
def saveToHBaseAndRedis(connection: Connection, jedis: Jedis, eachLine: ConsumerRecord[String, String]): ConsumerRecord[String, String] = { var rowkey = "" //司机ID var driverId = "" //订单ID var orderId = "" //经度 var lng = "" //维度 var lat = "" //时间戳 var timestamp = "" val topic: String = eachLine.topic() val line: String = eachLine.value() //成都数据 if (line.split(",").size > 4) { if (!line.contains("end")) { //非结束数据,保存到hbase里面去 //成都数据 val strings: Array[String] = line.split(",") val split: Array[String] = line.split(",") driverId = split(0) orderId = split(1) timestamp = split(2) lng = split(3) lat = split(4) rowkey = orderId + "_" + timestamp val put = new Put(rowkey.getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "CITYCODE".getBytes(), Constants.CITY_CODE_CHENG_DU.getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "DRIVERID".getBytes(), driverId.getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "ORDERID".getBytes(), orderId.getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "TIMESTAMP".getBytes(), (timestamp + "").getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "TIME".getBytes(), DateUtils.formateDate(new Date((timestamp + "000").toLong), "yyyy-MM-dd HH:mm:ss").getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "LNG".getBytes(), lng.getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "LAT".getBytes(), lat.getBytes()) val table: Table = connection.getTable(TableName.valueOf(Constants.HTAB_GPS)) table.put(put) table.close() } //数据保存到redis里面去 if (line.split(",").size == 5 || line.contains("end")) { JedisUtil.saveChengDuJedis(line) } //无论如何,成都数据都需要往下传递 } else { //海口数据 /** * 17595848583981 3 83 0898 460108 1 0 5 0 0 1642 0000-00-00 00:00:00 2017-09-20 03:20:00 14 NULL 2932979a59c14a3200007183013897db 3 110.4613 19.9425 110.462 19.9398 2017 09 20 */ var rowkey: String = "" val fields: Array[String] = line.split("\t") //println(fields.length) if (fields.length == 24 && !line.contains("dwv_order_make_haikou")) { //订单ID+出发时间作为hbase表的rowkey rowkey = fields(0) + "_" + fields(13).replaceAll("-", "") + fields(14).replaceAll(":", "") val put = new Put(rowkey.getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "ORDER_ID".getBytes(), fields(0).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "PRODUCT_ID".getBytes(), fields(1).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "CITY_ID".getBytes(), fields(2).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "DISTRICT".getBytes(), fields(3).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "COUNTY".getBytes(), fields(4).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "TYPE".getBytes(), fields(5).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "COMBO_TYPE".getBytes(), fields(6).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "TRAFFIC_TYPE".getBytes(), fields(7).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "PASSENGER_COUNT".getBytes(), fields(8).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "DRIVER_PRODUCT_ID".getBytes(), fields(9).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "START_DEST_DISTANCE".getBytes(), fields(10).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "ARRIVE_TIME".getBytes(), fields(11).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "DEPARTURE_TIME".getBytes(), fields(12).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "PRE_TOTAL_FEE".getBytes(), fields(13).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "NORMAL_TIME".getBytes(), fields(14).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "BUBBLE_TRACE_ID".getBytes(), fields(15).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "PRODUCT_1LEVEL".getBytes(), fields(16).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "DEST_LNG".getBytes(), fields(17).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "DEST_LAT".getBytes(), fields(18).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "STARTING_LNG".getBytes(), fields(19).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "STARTING_LAT".getBytes(), fields(20).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "YEAR".getBytes(), fields(21).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "MONTH".getBytes(), fields(22).getBytes()) put.addColumn(Constants.DEFAULT_FAMILY.getBytes(), "DAY".getBytes(), fields(23).getBytes()) val table: Table = connection.getTable(TableName.valueOf(Constants.HTAB_HAIKOU_ORDER)) table.put(put) table.close() } } eachLine }
将GPS数据存入redis中
public static void saveChengDuJedis(String line) throws ParseException { Jedis jedis = getJedis(); String[] split = line.split(","); String orderId = split[1]; if (line.startsWith("end") && line.contains(",")) { // System.out.println("我终于接受到了一条结束标识了,结束订单id为" + orderId); jedis.lpush(Constants.CITY_CODE_CHENG_DU + "_" + orderId, "end"); //发现了结束标识,将订单从实时订单列表里面移除掉 jedis.srem(Constants.REALTIME_ORDERS,Constants.CITY_CODE_CHENG_DU + "_" + orderId); } else { String driverId = split[0]; String timestamp = split[2]; String lng = split[3]; String lat = split[4]; //1.存入实时订单单号 使用redis的Set集合,自动对相同的订单id进行去重 jedis.sadd(Constants.REALTIME_ORDERS, Constants.CITY_CODE_CHENG_DU + "_" + orderId); //2.存入实时订单的经纬度信息,使用set集合自动对经纬度信息进行去重操作 jedis.lpush(Constants.CITY_CODE_CHENG_DU + "_" + orderId, lng + "," + lat); //3.存入订单的开始结束时间信息 Order order = new Order(); String hget = jedis.hget(Constants.ORDER_START_ENT_TIME, orderId); if(StringUtils.isNotEmpty(hget)){ //已经有了数据了 //将获取的数据与已经存在的数据比较,如果时间大于起始时间,更新结束时间和结束经纬度 Order parseOrder = JSONObject.parseObject(hget, Order.class); // System.out.println(parseOrder.toString()); //当前数据时间比redis当中的结束时间更大,需要更新结束时间和结束经纬度 if(Long.parseLong(timestamp) * 1000 > parseOrder.getEndTime()){ parseOrder.setEndTime(Long.parseLong(timestamp) * 1000); parseOrder.setGetOfLat(lat); parseOrder.setGetOfLng(lng); jedis.hset(Constants.ORDER_START_ENT_TIME, orderId, JSONObject.toJSONString(parseOrder)); }else if(Long.parseLong(timestamp) * 1000 < parseOrder.getStartTime()){ parseOrder.setStartTime(Long.parseLong(timestamp) * 1000); parseOrder.setGetOnLat(lat); parseOrder.setGetOnLng(lng); jedis.hset(Constants.ORDER_START_ENT_TIME, orderId, JSONObject.toJSONString(parseOrder)); } }else{ //没有数据,将起始和结束时间设置成为一样的 //上车经纬度和下车经纬度设置成为一样的 order.setGetOnLat(lat); order.setGetOnLng(lng); order.setCityCode(Constants.CITY_CODE_CHENG_DU); order.setGetOfLng(lng); order.setGetOfLat(lat); order.setEndTime(Long.parseLong((timestamp + "000"))); order.setStartTime(Long.parseLong((timestamp + "000"))); order.setOrderId(orderId); //将对象转换成为字符串,存入到redis当中去 jedis.hset(Constants.ORDER_START_ENT_TIME, orderId, JSONObject.toJSONString(order)); } //每小时订单统计 hourOrderCount(orderId, timestamp); } JedisUtil.returnJedis(jedis); }
4、第四步提交消费的kafka的偏移量到 hbase的表中进行管理
//获取到消费完成的offset的偏移量 val offsetRanges: Array[OffsetRange] = eachRdd.asInstanceOf[HasOffsetRanges].offsetRanges //将offset保存到hbase里面去,默认可以手动提交保存到kafak的一个topic里面去 //将offset保存到kafak里面去 // result.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges) for (eachrange <- offsetRanges) { val startOffset: Long = eachrange.fromOffset val endOffset: Long = eachrange.untilOffset val topic: String = eachrange.topic val partition: Int = eachrange.partition //将offset保存到hbase里面去 HbaseTools.saveBatchOffset(group, topic, partition + "", endOffset) }
def saveBatchOffset(group: String, topic: String, partition: String, offset: Long): Unit = { val conn: Connection = HbaseTools.getHbaseConn val table: Table = conn.getTable(TableName.valueOf(Constants.HBASE_OFFSET_STORE_TABLE)) val rowkey = group + ":" + topic val columName = group + ":" + topic + ":" + partition val put = new Put(rowkey.getBytes()) put.addColumn(Constants.HBASE_OFFSET_FAMILY_NAME.getBytes(), columName.getBytes(), offset.toString.getBytes()) table.put(put) table.close() conn.close() }
hbase_offset_store的存储格式如下