在自然语言处理(NLP)领域,序列标注是一项重要的任务。其目标是为给定的输入序列中的每个Token分配一个标签。序列标注的应用范围广泛,包括分词、词性标注、命名实体识别(NER)等。在本文中,我们将探讨如何利用LSTM和CRF模型进行序列标注,并使用MindSpore框架实现这一过程。通过深入了解LSTM和CRF的原理和实现方法,读者将能够更好地理解和应用这些技术来解决实际问题。
条件随机场(Conditional Random Field, CRF)
在序列标注任务中,简单地将每个Token的标签预测视为多分类问题是不够的,因为相邻Token之间存在依赖关系。以命名实体识别为例:
输入序列 | 清 | 华 | 大 | 学 | 座 | 落 | 于 | 首 | 都 | 北 | 京 |
---|---|---|---|---|---|---|---|---|---|---|---|
输出标注 | B | I | I | I | O | O | O | O | O | B | I |
在上述例子中,清华大学
和北京
是地名,需要将其识别出来。我们对每个输入的单词预测其标签,最后根据标签来识别实体。为了捕获这种依赖关系,我们引入条件随机场(CRF)。
为什么需要CRF
在序列标注任务中,简单地将每个Token的标签预测视为多分类问题是不够的,因为相邻Token之间存在依赖关系。比如在命名实体识别任务中,一个实体的开始标签通常是"B",后续的标签是"I",而非实体的标签是"O"。如果我们不考虑这种依赖关系,模型可能会产生不合理的标签序列。条件随机场(CRF)通过引入发射概率和转移概率,能够捕获这种标签间的依赖关系,从而提高预测的准确性。
CRF的定义与参数化形式
CRF是一种概率图模型,适用于捕获序列中相邻Token之间的依赖关系。设 x = { x 0 , . . . , x n } x=\{x_0, ..., x_n\} x={x0,...,xn}为输入序列, y = { y 0 , . . . , y n } y=\{y_0, ..., y_n\} y={y0,...,yn}为输出的标注序列,其中 n n n为序列的最大长度。则输出序列 y y y的概率为:
P ( y ∣ x ) = exp ( Score ( x , y ) ) ∑ y ′ ∈ Y exp ( Score ( x , y ′ ) ) P(y|x) = \frac{\exp{(\text{Score}(x, y)})}{\sum_{y' \in Y} \exp{(\text{Score}(x, y')})} P(y∣x)=∑y′∈Yexp(Score(x,y′))exp(Score(x,y))
其中, Score ( x , y ) \text{Score}(x, y) Score(x,y)用于衡量序列 x x x和标签 y y y的匹配程度。我们定义两个概率函数来计算 Score \text{Score} Score:
- 发射概率函数 ψ EMIT \psi_\text{EMIT} ψEMIT:表示 x i → y i x_i \rightarrow y_i xi→yi的概率。
- 转移概率函数 ψ TRANS \psi_\text{TRANS} ψTRANS:表示 y i − 1 → y i y_{i-1} \rightarrow y_i yi−1→yi的概率。
基于这两个函数,我们可以得到 Score \text{Score} Score的计算公式:
Score ( x , y ) = ∑ i log ψ EMIT ( x i → y i ) + log ψ TRANS ( y i − 1 → y i ) \text{Score}(x,y) = \sum_i \log \psi_\text{EMIT}(x_i \rightarrow y_i) + \log \psi_\text{TRANS}(y_{i-1} \rightarrow y_i) Score(x,y)=i∑logψEMIT(xi→yi)+logψTRANS(yi−1→yi)
CRF的实现
在实现CRF时,我们需要计算正确标签序列的得分(Score)和所有可能标签序列的对数指数和(Normalizer)。然后通过求解负对数似然损失(NLL)来进行模型训练。
Score计算
为什么需要序列填充和掩码
在实际应用中,输入序列的长度可能不一致。为了将这些序列打包成一个Batch,我们需要对长度不足的序列进行填充。然而,填充的部分不应参与模型的训练和预测。因此,我们引入了掩码矩阵(mask),用于忽略填充部分的计算。这样可以确保模型只关注有效的Token,提高训练和预测的准确性。
首先根据公式计算正确标签序列的得分:
def compute_score(emissions, tags, seq_ends, mask, trans, start_trans, end_trans):
seq_length, batch_size = tags.shape
mask = mask.astype(emissions.dtype)
score = start_trans[tags[0]]
score += emissions[0, mnp.arange(batch_size), tags[0]]
for i in range(1, seq_length):
score += trans[tags[i - 1], tags[i]] * mask[i]
score += emissions[i, mnp.arange(batch_size), tags[i]] * mask[i]
last_tags = tags[seq_ends, mnp.arange(batch_size)]
score += end_trans[last_tags]
return score
Normalizer计算
接下来,我们使用动态规划算法计算Normalizer:
def compute_normalizer(emissions, mask, trans, start_trans, end_trans):
seq_length = emissions.shape[0]
score = start_trans + emissions[0]
for i in range(1, seq_length):
broadcast_score = score.expand_dims(2)
broadcast_emissions = emissions[i].expand_dims(1)
next_score = broadcast_score + trans + broadcast_emissions
next_score = ops.logsumexp(next_score, axis=1)
score = mnp.where(mask[i].expand_dims(1), next_score, score)
score += end_trans
return ops.logsumexp(score, axis=1)
Viterbi算法
为什么使用Viterbi算法
在解码阶段,我们需要找到使得序列得分最高的标签序列。穷举所有可能的标签序列并计算其得分是不可行的,因为可能的标签序列数量是指数级的。Viterbi算法是一种动态规划算法,能够高效地找到最优标签序列。它通过逐步计算每个Token对应的最优标签,并保存中间结果,避免了重复计算,从而大大提高了解码的效率。
在解码阶段,我们使用Viterbi算法求解最优标签序列:
def viterbi_decode(emissions, mask, trans, start_trans, end_trans):
seq_length = mask.shape[0]
score = start_trans + emissions[0]
history = ()
for i in range(1, seq_length):
broadcast_score = score.expand_dims(2)
broadcast_emission = emissions[i].expand_dims(1)
next_score = broadcast_score + trans + broadcast_emission
indices = next_score.argmax(axis=1)
history += (indices,)
next_score = next_score.max(axis=1)
score = mnp.where(mask[i].expand_dims(1), next_score, score)
score += end_trans
return score, history
def post_decode(score, history, seq_length):
batch_size = seq_length.shape[0]
seq_ends = seq_length - 1
best_tags_list = []
for idx in range(batch_size):
best_last_tag = score[idx].argmax(axis=0)
best_tags = [int(best_last_tag.asnumpy())]
for hist in reversed(history[:seq_ends[idx]]):
best_last_tag = hist[idx][best_tags[-1]]
best_tags.append(int(best_last_tag.asnumpy()))
best_tags.reverse()
best_tags_list.append(best_tags)
return best_tags_list
CRF层的封装
我们将上述代码封装成一个CRF层:
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
import mindspore.numpy as mnp
from mindspore.common.initializer import initializer, Uniform
def sequence_mask(seq_length, max_length, batch_first=False):
range_vector = mnp.arange(0, max_length, 1, seq_length.dtype)
result = range_vector < seq_length.view(seq_length.shape + (1,))
if batch_first:
return result.astype(ms.int64)
return result.astype(ms.int64).swapaxes(0, 1)
class CRF(nn.Cell):
def __init__(self, num_tags: int, batch_first: bool = False, reduction: str = 'sum') -> None:
if num_tags <= 0:
raise ValueError(f'invalid number of tags: {num_tags}')
super().__init__()
if reduction not in ('none', 'sum', 'mean', 'token_mean'):
raise ValueError(f'invalid reduction: {reduction}')
self.num_tags = num_tags
self.batch_first = batch_first
self.reduction = reduction
self.start_transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags,)), name='start_transitions')
self.end_transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags,)), name='end_transitions')
self.transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags, num_tags)), name='transitions')
def construct(self, emissions, tags=None, seq_length=None):
if tags is None:
return self._decode(emissions, seq_length)
return self._forward(emissions, tags, seq_length)
def _forward(self, emissions, tags=None, seq_length=None):
if self.batch_first:
batch_size, max_length = tags.shape
emissions = emissions.swapaxes(0, 1)
tags = tags.swapaxes(0, 1)
else:
max_length, batch_size = tags.shape
if seq_length is None:
seq_length = mnp.full((batch_size,), max_length, ms.int64)
mask = sequence_mask(seq_length, max_length)
numerator = compute_score(emissions, tags, seq_length-1, mask, self.transitions, self.start_transitions, self.end_transitions)
denominator = compute_normalizer(emissions, mask, self.transitions, self.start_transitions, self.end_transitions)
llh = denominator - numerator
if self.reduction == 'none':
return llh
if self.reduction == 'sum':
return llh.sum()
if self.reduction == 'mean':
return llh.mean()
return llh.sum() / mask.astype(emissions.dtype).sum()
def _decode(self, emissions, seq_length=None):
if self.batch_first:
batch_size, max_length = emissions.shape[:2]
emissions = emissions.swapaxes(0, 1)
else:
batch_size, max_length = emissions.shape[:2]
if seq_length is None:
seq_length = mnp.full((batch_size,), max_length, ms.int64)
mask = sequence_mask(seq_length, max_length)
return viterbi_decode(emissions, mask, self.transitions, self.start_transitions, self.end_transitions)
BiLSTM+CRF模型
为什么使用双向LSTM
双向LSTM能够同时捕获序列中前后两个方向的依赖关系。在序列标注任务中,当前Token的标签不仅依赖于前面的Token,还可能依赖于后面的Token。通过使用双向LSTM,我们可以更全面地提取序列特征,从而提高模型的表现。
在实现了CRF层之后,我们设计一个双向LSTM+CRF的模型来进行命名实体识别任务的训练。模型结构如下:
nn.Embedding -> nn.LSTM -> nn.Dense -> CRF
具体实现如下:
class BiLSTM_CRF(nn.Cell):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_tags, padding_idx=0):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=padding_idx)
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, bidirectional=True, batch_first=True)
self.hidden2tag = nn.Dense(hidden_dim, num_tags, 'he_uniform')
self.crf = CRF(num_tags, batch_first=True)
def construct(self, inputs, seq_length, tags=None):
embeds = self.embedding(inputs)
outputs, _ = self.lstm(embeds, seq_length=seq_length)
feats = self.hidden2tag(outputs)
crf_outs = self.crf(feats, tags, seq_length)
return crf_outs
数据准备
我们生成两句例子和对应的标签,并构造词表和标签表:
embedding_dim = 16
hidden_dim = 32
training_data = [(
"清 华 大 学 坐 落 于 首 都 北 京".split(),
"B I I I O O O O O B I".split()
), (
"重 庆 是 一 个 魔 幻 城 市".split(),
"B I O O O O O O O".split()
)]
word_to_idx = {}
word_to_idx['<pad>'] = 0
for sentence, tags in training_data:
for word in sentence:
if word not in word_to_idx:
word_to_idx[word] = len(word_to_idx)
tag_to_idx = {"B": 0, "I": 1, "O": 2}
len(word_to_idx)
模型训练
实例化模型,选择优化器并将模型和优化器送入Wrapper:
model = BiLSTM_CRF(len(word_to_idx), embedding_dim, hidden_dim, len(tag_to_idx))
optimizer = nn.SGD(model.trainable_params(), learning_rate=0.01, weight_decay=1e-4)
grad_fn = ms.value_and_grad(model, None, optimizer.parameters)
def train_step(data, seq_length, label):
loss, grads = grad_fn(data, seq_length, label)
optimizer(grads)
return loss
将生成的数据打包成Batch,并进行填充:
def prepare_sequence(seqs, word_to_idx, tag_to_idx):
seq_outputs, label_outputs, seq_length = [], [], []
max_len = max([len(i[0]) for i in seqs])
for seq, tag in seqs:
seq_length.append(len(seq))
idxs = [word_to_idx[w] for w in seq]
labels = [tag_to_idx[t] for t in tag]
idxs.extend([word_to_idx['<pad>'] for i in range(max_len - len(seq))])
labels.extend([tag_to_idx['O'] for i in range(max_len - len(seq))])
seq_outputs.append(idxs)
label_outputs.append(labels)
return ms.Tensor(seq_outputs, ms.int64), \
ms.Tensor(label_outputs, ms.int64), \
ms.Tensor(seq_length, ms.int64)
data, label, seq_length = prepare_sequence(training_data, word_to_idx, tag_to_idx)
data.shape, label.shape, seq_length.shape
预编译模型并训练500个step:
from tqdm import tqdm
steps = 500
with tqdm(total=steps) as t:
for i in range(steps):
loss = train_step(data, seq_length, label)
t.set_postfix(loss=loss)
t.update(1)
模型评估
训练完成后,我们使用模型进行预测:
score, history = model(data, seq_length)
score
使用后处理函数进行预测得分的处理:
predict = post_decode(score, history, seq_length)
predict
将预测的index序列转换为标签序列并打印输出结果:
idx_to_tag = {idx: tag for tag, idx in tag_to_idx.items()}
def sequence_to_tag(sequences, idx_to_tag):
outputs = []
for seq in sequences:
outputs.append([idx_to_tag[i] for i in seq])
return outputs
sequence_to_tag(predict, idx_to_tag)
通过上述步骤,我们成功实现了一个基于LSTM和CRF的序列标注模型,并在命名实体识别任务中进行了应用。希望这篇博客能帮助你更好地理解LSTM和CRF在序列标注中的应用。