实验用的数据可以点击这里
完整代码:github或gitee
模型定义
from transformers.models.bert.modeling_bert import *
from torch.nn.utils.rnn import pad_sequence
from torchcrf import CRF
from transformers import (
BertTokenizerFast,
AutoModel,
)
from transformers import BertTokenizer, BertModel
class BertNER(BertPreTrainedModel):
def __init__(self, config):
super(BertNER, self).__init__(config)
self.num_labels = config.num_labels
self.bert = AutoModel.from_pretrained('ckiplab/albert-tiny-chinese')
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# lstm_embedding_size=128,
# lstm_dropout_prob=0.5
# self.bilstm = nn.LSTM(
# input_size=lstm_embedding_size, # 1024
# hidden_size=config.hidden_size // 2, # 1024
# batch_first=True,
# num_layers=2,
# dropout=lstm_dropout_prob, # 0.5
# bidirectional=True
# )
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.crf = CRF(config.num_labels, batch_first=True)
self.init_weights()
def forward(self, input_data, token_type_ids=None, attention_mask=None, labels=None,
position_ids=None, inputs_embeds=None, head_mask=None):
input_ids, input_token_starts = input_data
outputs = self.bert(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds)
sequence_output = outputs[0]
# 去除[CLS]标签等位置,获得与label对齐的pre_label表示
origin_sequence_output = [layer[starts.nonzero().squeeze(1)]
for layer, starts in zip(sequence_output, input_token_starts)]
# 将sequence_output的pred_label维度padding到最大长度
padded_sequence_output = pad_sequence(origin_sequence_output, batch_first=True)
# dropout pred_label的一部分feature
padded_sequence_output = self.dropout(padded_sequence_output)
# lstm_output, _ = self.bilstm(padded_sequence_output)
# 得到判别值
logits = self.classifier(padded_sequence_output)
# logits = padded_sequence_output
outputs = (logits,)
if labels is not None:#如果标签存在就计算loss,否则就是输出线性层对应的结果,这样便于通过后续crf的decode函数解码得到预测结果。
loss_mask = labels.gt(-1)
loss = self.crf(logits, labels, loss_mask) * (-1)
outputs = (loss,) + outputs
# contain: (loss), scores
return outputs
模型训练
def train(train_loader, dev_loader, model, optimizer, scheduler, model_dir):
"""train the model and test model performance"""
# reload weights from restore_dir if specified
if model_dir is not None and config.load_before:
model = BertNER.from_pretrained(model_dir)
model.to(config.device)
logging.info("--------Load model from {}--------".format(model_dir))
best_val_f1 = 0.0
patience_counter = 0
# start training
for epoch in range(1, config.epoch_num + 1):
train_epoch(train_loader, model, optimizer, scheduler, epoch)
val_metrics = evaluate(dev_loader, model, mode='dev')
val_f1 = val_metrics['f1']
logging.info("Epoch: {}, dev loss: {}, f1 score: {}".format(epoch, val_metrics['loss'], val_f1))
improve_f1 = val_f1 - best_val_f1
if improve_f1 > 1e-5:
best_val_f1 = val_f1
model_dir_new = config.model_dir + str(val_f1)[:6] +'_' + str(val_metrics['loss'])[:6] +'_' + str(epoch) + '/'
if not os.path.exists(model_dir_new): #判断文件夹是否存在
os.makedirs(model_dir_new) #新建文件夹
model.save_pretrained(model_dir_new)
logging.info("--------Save best model!--------")
if improve_f1 < config.patience:
patience_counter += 1
else:
patience_counter = 0
else:
patience_counter += 1
# Early stopping and logging best f1
if (patience_counter >= config.patience_num and epoch > config.min_epoch_num) or epoch == config.epoch_num:
logging.info("Best val f1: {}".format(best_val_f1))
break
logging.info("Training Finished!")