微分与偏导的几何应用
空间曲面的切平面与法向量
首先何谓空间曲面,空间曲面有两种表现形式,一种以显函数形式表示
y
=
f
(
x
,
y
)
y=f(x,y)
y=f(x,y)一种则以参数方程的形式表示
{
x
=
x
(
u
,
v
)
y
=
y
(
u
,
v
)
z
=
z
(
u
,
v
)
\begin{cases} x=x(u,v)\\ y=y(u,v)\\ z=z(u,v) \end{cases}
⎩⎪⎨⎪⎧x=x(u,v)y=y(u,v)z=z(u,v)如果以显函数形式表示,空间曲面在某点的切平面就表示为其全微分的超平面
z
=
f
(
x
0
,
y
0
)
+
f
x
(
x
0
,
y
0
)
(
x
−
x
0
)
+
f
y
(
x
0
,
y
0
)
(
y
−
y
0
)
z=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)
z=f(x0,y0)+fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)问题是:如果以参数方程的形式表示,切平面该如何求得呢?我们当然是要化成显函数的形式了,但是显函数不总是那么容易求得,这时,我们想到隐函数存在定理。假设
∂
(
x
,
y
)
∂
(
u
,
v
)
≠
0
\frac{\partial(x,y)}{\partial(u,v)}\neq 0
∂(u,v)∂(x,y)=0,由隐函数存在定理2,在局部
x
0
=
x
(
u
0
,
v
0
)
,
y
0
=
y
(
u
0
,
v
0
)
x_0=x(u_0,v_0),y_0=y(u_0,v_0)
x0=x(u0,v0),y0=y(u0,v0)就存在一个连续可微的隐函数组
{
u
=
u
(
x
,
y
)
v
=
v
(
x
,
y
)
\begin{cases} u=u(x,y)\\ v=v(x,y) \end{cases}
{u=u(x,y)v=v(x,y)代入第三个方程中,就得到显函数
z
=
z
(
u
(
x
,
y
)
,
v
(
x
,
y
)
)
z=z(u(x,y),v(x,y))
z=z(u(x,y),v(x,y))于是
{
∂
z
∂
x
=
∂
z
∂
u
∂
u
∂
x
+
∂
z
∂
v
∂
v
∂
x
∂
z
∂
y
=
∂
z
∂
u
∂
u
∂
y
+
∂
z
∂
v
∂
v
∂
y
\begin{cases} \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\\ \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial y} +\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} \end{cases}
{∂x∂z=∂u∂z∂x∂u+∂v∂z∂x∂v∂y∂z=∂u∂z∂y∂u+∂v∂z∂y∂v只需要我们求出
∂
u
∂
x
,
∂
u
∂
y
,
∂
v
∂
x
,
∂
v
∂
y
\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x},\frac{\partial v}{\partial y}
∂x∂u,∂y∂u,∂x∂v,∂y∂v
自然地,我们联想到Cramer法则:
{
∂
u
∂
x
=
∂
y
∂
v
∂
x
∂
u
∂
y
∂
v
−
∂
x
∂
v
∂
y
∂
u
∂
v
∂
x
=
−
∂
y
∂
u
∂
x
∂
u
∂
y
∂
v
−
∂
x
∂
v
∂
y
∂
u
∂
u
∂
y
=
−
∂
x
∂
v
∂
x
∂
u
∂
y
∂
v
−
∂
x
∂
v
∂
y
∂
u
∂
v
∂
y
=
∂
x
∂
u
∂
x
∂
u
∂
y
∂
v
−
∂
x
∂
v
∂
y
∂
u
\begin{cases} \frac{\partial u}{\partial x} = \frac{\frac{\partial y}{\partial v}}{ \frac{\partial x}{\partial u}\frac{\partial y}{\partial v}- \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} }\\ \frac{\partial v}{\partial x} = \frac{-\frac{\partial y}{\partial u}}{ \frac{\partial x}{\partial u}\frac{\partial y}{\partial v}- \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} }\\ \frac{\partial u}{\partial y}=\frac{-\frac{\partial x}{\partial v}}{ \frac{\partial x}{\partial u}\frac{\partial y}{\partial v}- \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} }\\ \frac{\partial v}{\partial y}=\frac{ \frac{\partial x}{\partial u} }{ \frac{\partial x}{\partial u}\frac{\partial y}{\partial v}- \frac{\partial x}{\partial v}\frac{\partial y}{\partial u} } \end{cases}
⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧∂x∂u=∂u∂x∂v∂y−∂v∂x∂u∂y∂v∂y∂x∂v=∂u∂x∂v∂y−∂v∂x∂u∂y−∂u∂y∂y∂u=∂u∂x∂v∂y−∂v∂x∂u∂y−∂v∂x∂y∂v=∂u∂x∂v∂y−∂v∂x∂u∂y∂u∂x这样,我们就求得了所有偏导数,就可以得到切平面的方程,切平面的法向量就是
(
−
∂
z
∂
x
,
−
∂
z
∂
y
,
1
)
(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial y},1)
(−∂x∂z,−∂y∂z,1)如果是参数方程形式
∂
z
∂
x
=
det
[
∂
z
∂
u
∂
z
∂
v
∂
y
∂
u
∂
y
∂
v
]
det
[
∂
x
∂
u
∂
x
∂
v
∂
y
∂
u
∂
y
∂
v
]
\frac{\partial z}{\partial x} =\frac{ \det\left[ \begin{matrix} \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right] }{ \det\left[ \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right] }
∂x∂z=det[∂u∂x∂u∂y∂v∂x∂v∂y]det[∂u∂z∂u∂y∂v∂z∂v∂y]
∂
z
∂
y
=
det
[
∂
z
∂
u
∂
z
∂
v
∂
x
∂
u
∂
x
∂
v
]
det
[
∂
x
∂
u
∂
x
∂
v
∂
y
∂
u
∂
y
∂
v
]
\frac{\partial z}{\partial y} =\frac{ \det\left[ \begin{matrix} \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}\\ \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v} \end{matrix} \right] }{ \det\left[ \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right] }
∂y∂z=det[∂u∂x∂u∂y∂v∂x∂v∂y]det[∂u∂z∂u∂x∂v∂z∂v∂x]
因此,参数方程形式下,法向量为:
(
det
[
∂
y
∂
u
∂
y
∂
v
∂
z
∂
u
∂
z
∂
v
]
,
det
[
∂
x
∂
u
∂
x
∂
v
∂
z
∂
u
∂
z
∂
v
]
,
det
[
∂
x
∂
u
∂
x
∂
v
∂
y
∂
u
∂
y
∂
v
]
)
(\det\left[ \begin{matrix} \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\\ \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v} \end{matrix} \right], \det\left[ \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial z}{\partial u}&\frac{\partial z}{\partial v} \end{matrix} \right], \det\left[ \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right] )
(det[∂u∂y∂u∂z∂v∂y∂v∂z],det[∂u∂x∂u∂z∂v∂x∂v∂z],det[∂u∂x∂u∂y∂v∂x∂v∂y])于是,参数方程形式下,只要以上三个行列式之一不为0,切平面就可以表为
∂
(
y
,
z
)
∂
(
u
,
v
)
(
x
−
x
0
)
+
∂
(
x
,
z
)
∂
(
u
,
v
)
(
y
−
y
0
)
+
∂
(
x
,
y
)
∂
(
u
,
v
)
(
y
−
y
0
)
=
0
\frac{\partial(y,z)}{\partial(u,v)}(x-x_0)+\frac{\partial(x,z)}{\partial(u,v)}(y-y_0) +\frac{\partial(x,y)}{\partial(u,v)}(y-y_0)=0
∂(u,v)∂(y,z)(x−x0)+∂(u,v)∂(x,z)(y−y0)+∂(u,v)∂(x,y)(y−y0)=0
空间曲线的切线与法平面
空间曲线则为以下的参数方程形式
{
x
=
x
(
t
)
y
=
y
(
t
)
z
=
z
(
t
)
\begin{cases} x=x(t)\\ y=y(t)\\ z=z(t) \end{cases}
⎩⎪⎨⎪⎧x=x(t)y=y(t)z=z(t)其中
t
∈
[
α
,
β
]
t\in[\alpha,\beta]
t∈[α,β],切线的方向向量该如何求解呢?
t
∈
[
α
,
β
]
t\in[\alpha,\beta]
t∈[α,β],
t
+
Δ
t
∈
[
α
,
β
]
t+\Delta t\in[\alpha,\beta]
t+Δt∈[α,β],假设
x
(
t
)
,
y
(
t
)
,
z
(
t
)
x(t),y(t),z(t)
x(t),y(t),z(t)都可微,那么:方向向量就可以通过逼近的方式得到
1
Δ
t
[
(
x
(
t
+
Δ
t
)
,
y
(
t
+
Δ
t
)
,
z
(
t
+
Δ
t
)
)
−
(
x
(
t
)
,
y
(
t
)
,
z
(
t
)
)
]
→
(
x
′
(
t
)
,
y
′
(
t
)
,
z
′
(
t
)
)
\frac{1}{\Delta t}[(x(t+\Delta t),y(t+\Delta t),z(t+\Delta t))-(x(t),y(t),z(t))] \to (x^\prime(t),y^\prime(t),z^\prime(t))
Δt1[(x(t+Δt),y(t+Δt),z(t+Δt))−(x(t),y(t),z(t))]→(x′(t),y′(t),z′(t))与之正交的一切向量组成其法平面:
x
′
(
t
)
(
x
−
x
(
t
)
)
+
y
′
(
t
)
(
y
−
y
(
t
)
)
+
z
′
(
z
−
z
(
t
)
)
=
0
x^\prime(t)(x-x(t))+y^\prime(t)(y-y(t))+z^\prime(z-z(t))=0
x′(t)(x−x(t))+y′(t)(y−y(t))+z′(z−z(t))=0当然,空间曲线可以由两个空间曲面相交得到
{
F
(
x
,
y
,
z
)
=
0
G
(
x
,
y
,
z
)
=
0
\begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases}
{F(x,y,z)=0G(x,y,z)=0在这种情况下,如何求得方向向量和法平面呢?我们不妨先讨论如下的情形:
{
z
=
F
(
x
,
y
)
z
=
G
(
x
,
y
)
\begin{cases} z=F(x,y)\\ z=G(x,y) \end{cases}
{z=F(x,y)z=G(x,y)相交得到的空间曲线应当如何求解法平面,假设
∂
(
F
,
G
)
∂
(
x
,
y
)
≠
0
\frac{\partial(F,G)}{\partial(x,y)}\neq 0
∂(x,y)∂(F,G)=0,那么,由隐函数存在定理,就可以反解出
{
x
=
x
(
z
)
y
=
y
(
z
)
\begin{cases} x=x(z)\\ y=y(z) \end{cases}
{x=x(z)y=y(z)再补充
z
=
z
z=z
z=z就成了参数方程形式
{
x
=
x
(
z
)
y
=
y
(
z
)
z
=
z
\begin{cases} x=x(z)\\ y=y(z)\\ z=z \end{cases}
⎩⎪⎨⎪⎧x=x(z)y=y(z)z=z同样地,对于更一般的形式,不妨假设
∂
(
F
,
G
)
∂
(
x
,
y
)
,
∂
(
F
,
G
)
∂
(
x
,
z
)
,
∂
(
F
,
G
)
∂
(
y
,
z
)
\frac{\partial(F,G)}{\partial(x,y)}, \frac{\partial(F,G)}{\partial(x,z)}, \frac{\partial(F,G)}{\partial(y,z)}
∂(x,y)∂(F,G),∂(x,z)∂(F,G),∂(y,z)∂(F,G)不全为0,假设
∂
(
F
,
G
)
∂
(
x
,
y
)
≠
0
\frac{\partial(F,G)}{\partial(x,y)}\neq 0
∂(x,y)∂(F,G)=0,由隐函数存在定理,可以反解出
{
x
=
x
(
z
)
y
=
y
(
z
)
\begin{cases} x=x(z)\\ y=y(z) \end{cases}
{x=x(z)y=y(z)再补充
z
=
z
z=z
z=z就成了参数方程形式
{
x
=
x
(
z
)
y
=
y
(
z
)
z
=
z
\begin{cases} x=x(z)\\ y=y(z)\\ z=z \end{cases}
⎩⎪⎨⎪⎧x=x(z)y=y(z)z=z下面我们对一般形式进行讨论:
x
′
(
z
)
=
∂
(
F
,
G
)
∂
(
y
,
z
)
∂
(
F
,
G
)
∂
(
x
,
y
)
x^\prime(z) = \frac{ \frac{\partial(F,G)}{\partial(y,z)} }{ \frac{\partial(F,G)}{\partial(x,y)} }
x′(z)=∂(x,y)∂(F,G)∂(y,z)∂(F,G)
y
′
(
z
)
=
∂
(
F
,
G
)
∂
(
x
,
z
)
∂
(
F
,
G
)
∂
(
x
,
y
)
y^\prime(z) = \frac{ \frac{\partial(F,G)}{\partial(x,z)} }{ \frac{\partial(F,G)}{\partial(x,y)} }
y′(z)=∂(x,y)∂(F,G)∂(x,z)∂(F,G)因此,法平面方程就是:
∂
(
F
,
G
)
∂
(
y
,
z
)
(
x
−
x
0
)
+
∂
(
F
,
G
)
∂
(
x
,
z
)
(
y
−
y
0
)
+
∂
(
F
,
G
)
∂
(
x
,
y
)
(
z
−
z
0
)
=
0
\frac{\partial(F,G)}{\partial(y,z)}(x-x_0)+ \frac{\partial(F,G)}{\partial(x,z)}(y-y_0)+ \frac{\partial(F,G)}{\partial(x,y)}(z-z_0)=0
∂(y,z)∂(F,G)(x−x0)+∂(x,z)∂(F,G)(y−y0)+∂(x,y)∂(F,G)(z−z0)=0
极值与条件极值
多元函数的极值
现在我们来讨论多元函数的极值问题,首先,同一元函数一样,如果多元函数
f
(
x
1
,
⋯
,
x
n
)
f(x_1,\cdots,x_n)
f(x1,⋯,xn)在
(
x
1
0
,
⋯
,
x
n
0
)
(x_1^0,\cdots,x_n^0)
(x10,⋯,xn0)处取极值点,并且在
(
x
1
0
,
⋯
,
x
n
0
)
(x_1^0,\cdots,x_n^0)
(x10,⋯,xn0)连续可微,那么首先在该点对各变元的偏导数为0,即
f
′
(
x
1
0
,
⋯
,
x
n
0
)
=
0
f^\prime(x_1^0,\cdots,x_n^0)=0
f′(x10,⋯,xn0)=0满足这个条件的点就称为驻点,然而驻点不一定都是极值点。同样地,对极值点的判定,我们可以借助“二阶导数”,也就是海色矩阵进行。
定理15.1
f
(
x
1
,
⋯
,
x
n
)
f(x_1,\cdots,x_n)
f(x1,⋯,xn)在
(
x
1
0
,
⋯
,
x
n
0
)
(x_1^0,\cdots,x_n^0)
(x10,⋯,xn0)的某个邻域上二阶连续可微,
f
′
(
x
1
0
,
⋯
,
x
n
0
)
=
0
f^\prime(x_1^0,\cdots,x_n^0)=0
f′(x10,⋯,xn0)=0,
H
f
(
x
0
)
H_f(x_0)
Hf(x0)为
f
(
x
1
,
⋯
,
x
n
)
f(x_1,\cdots,x_n)
f(x1,⋯,xn)
(
x
1
0
,
⋯
,
x
n
0
)
(x_1^0,\cdots,x_n^0)
(x10,⋯,xn0)处的海色矩阵,则
(1)
H
f
(
x
0
)
H_f(x_0)
Hf(x0)正定,则
f
f
f在
(
x
1
0
,
⋯
,
x
n
0
)
(x_1^0,\cdots,x_n^0)
(x10,⋯,xn0)处取严格极小值
(2)
H
f
(
x
0
)
H_f(x_0)
Hf(x0)负定,则
f
f
f在
(
x
1
0
,
⋯
,
x
n
0
)
(x_1^0,\cdots,x_n^0)
(x10,⋯,xn0)处取严格极大值
(3)
H
f
(
x
0
)
H_f(x_0)
Hf(x0)不定,则
f
f
f在
(
x
1
0
,
⋯
,
x
n
0
)
(x_1^0,\cdots,x_n^0)
(x10,⋯,xn0)处不取极值
证:
(1)(2)我们仅证明(1),(2)的证明是类似的
由Taylor公式 f ( x ) = f ( x 0 ) + 1 2 ( x − x 0 ) T H f ( x 0 ) ( x − x 0 ) + o ( ( x − x 0 ) T ( x − x 0 ) ) f(x)=f(x_0)+\frac{1}{2}(x-x_0)^TH_f(x_0)(x-x_0) +o((x-x_0)^T(x-x_0)) f(x)=f(x0)+21(x−x0)THf(x0)(x−x0)+o((x−x0)T(x−x0))由于 H f ( x 0 ) H_f(x_0) Hf(x0)正定,存在正定矩阵 Q Q Q,使得 Q H f ( x 0 ) Q T = D = d i a g ( λ 1 , ⋯ , λ n ) QH_f(x_0)Q^T=D=diag(\lambda_1,\cdots,\lambda_n) QHf(x0)QT=D=diag(λ1,⋯,λn)其中, λ 1 , ⋯ , λ n \lambda_1,\cdots,\lambda_n λ1,⋯,λn都是正数,是 H f ( x 0 ) H_f(x_0) Hf(x0)的特征值。对 x − x 0 x-x_0 x−x0作变换 Δ y = Q ( x − x 0 ) \Delta y=Q(x-x_0) Δy=Q(x−x0),就有
f ( x ) − f ( x 0 ) = 1 2 Δ y T D Δ y + o ( Δ y T Δ y ) f(x)-f(x_0)=\frac{1}{2}\Delta y^T D \Delta y + o(\Delta y^T\Delta y) f(x)−f(x0)=21ΔyTDΔy+o(ΔyTΔy)于是 f ( x ) − f ( x 0 ) Δ x T Δ x = 1 2 Δ y T D Δ y Δ y T Δ y + o ( Δ y T Δ y ) Δ y T Δ y \frac{f(x)-f(x_0)}{\Delta x^T\Delta x} =\frac{1}{2}\frac{\Delta y^T D \Delta y}{ \Delta y^T\Delta y }+ \frac{ o(\Delta y^T\Delta y) }{ \Delta y^T\Delta y } ΔxTΔxf(x)−f(x0)=21ΔyTΔyΔyTDΔy+ΔyTΔyo(ΔyTΔy)
Δ y T D Δ y Δ y T Δ y = ∑ k = 1 n λ k Δ y k 2 ∑ k = 1 n Δ y k 2 ≥ min ( λ 1 , ⋯ , λ n ) > 0 (1) \tag{1} \frac{ \Delta y^T D \Delta y }{\Delta y^T\Delta y} =\frac{ \sum_{k=1}^n{\lambda_k\Delta y_k^2} }{ \sum_{k=1}^n{\Delta y_k^2} }\ge\min(\lambda_1,\cdots,\lambda_n)>0 ΔyTΔyΔyTDΔy=∑k=1nΔyk2∑k=1nλkΔyk2≥min(λ1,⋯,λn)>0(1)存在 δ > 0 \delta >0 δ>0,当 Δ x T Δ x < δ \Delta x^T\Delta x<\sqrt{\delta} ΔxTΔx<δ时
∣ o ( Δ y T Δ y ) Δ y T Δ y ∣ < min ( λ 1 , ⋯ , λ n ) 2 |\frac{ o(\Delta y^T\Delta y) }{ \Delta y^T\Delta y }|<\frac{\min(\lambda_1,\cdots,\lambda_n)}{2} ∣ΔyTΔyo(ΔyTΔy)∣<2min(λ1,⋯,λn)这样
f ( x ) − f ( x 0 ) Δ x T Δ x > 0 \frac{f(x)-f(x_0)}{\Delta x^T\Delta x} >0 ΔxTΔxf(x)−f(x0)>0从而 f ( x ) > f ( x 0 ) f(x)>f(x_0) f(x)>f(x0)这样 f ( x ) f(x) f(x)在 x 0 x_0 x0处取得严格极小值
反过来,按照公式(1),如果 H f ( x 0 ) H_f(x_0) Hf(x0)不定,那么存在一正一负两个特征值,用相同的方法就可以证明 f ( x ) f(x) f(x)在 x 0 x_0 x0处不取极值,就证得了(3)
条件极值与拉格朗日乘数法
很多情况下,我们都是给定一定的条件求极值,即如下形式的优化问题:目标函数为
y
=
f
(
x
1
,
⋯
,
x
n
)
y=f(x_1,\cdots,x_n)
y=f(x1,⋯,xn)条件为
{
g
1
(
x
1
,
⋯
,
x
n
)
=
0
g
2
(
x
1
,
⋯
,
x
n
)
=
0
⋯
g
m
(
x
1
,
⋯
,
x
n
)
=
0
\begin{cases} g_1(x_1,\cdots,x_n)=0\\ g_2(x_1,\cdots,x_n)=0\\ \cdots\\ g_m(x_1,\cdots,x_n)=0 \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧g1(x1,⋯,xn)=0g2(x1,⋯,xn)=0⋯gm(x1,⋯,xn)=0其中
m
<
n
m<n
m<n,在该条件下求极值或最值,我们假定
∂
(
g
1
,
⋯
,
g
m
)
∂
(
x
1
,
⋯
,
x
m
)
≠
0
\frac{\partial(g_1,\cdots,g_m)}{\partial(x_1,\cdots,x_m)}\neq 0
∂(x1,⋯,xm)∂(g1,⋯,gm)=0,由隐函数存在定理,就存在隐函数组
{
x
1
=
h
1
(
x
m
+
1
,
⋯
,
x
n
)
⋯
x
m
=
h
m
(
x
m
+
1
,
⋯
,
x
n
)
\begin{cases} x_1 = h_1(x_{m+1},\cdots,x_n)\\ \cdots\\ x_m=h_m(x_{m+1},\cdots,x_n) \end{cases}
⎩⎪⎨⎪⎧x1=h1(xm+1,⋯,xn)⋯xm=hm(xm+1,⋯,xn)代入到目标函数中,就化成无条件极值问题
y
=
F
(
x
m
+
1
,
⋯
,
x
n
)
=
f
(
h
(
x
m
+
1
,
⋯
,
x
n
)
,
x
m
+
1
,
⋯
,
x
n
)
y=F(x_{m+1},\cdots,x_n)=f(h(x_{m+1},\cdots,x_n),x_{m+1},\cdots,x_n)
y=F(xm+1,⋯,xn)=f(h(xm+1,⋯,xn),xm+1,⋯,xn)由取极值的必要条件,就要求
∂
F
∂
x
k
=
0
k
=
m
+
1
,
⋯
,
n
\frac{\partial F}{\partial x_k}=0\quad k=m+1,\cdots,n
∂xk∂F=0k=m+1,⋯,n对
k
=
m
+
1
,
⋯
,
n
k=m+1,\cdots,n
k=m+1,⋯,n,就有
∑
i
=
1
m
∂
h
i
∂
x
k
∂
f
∂
x
i
+
∂
f
∂
x
k
=
0
(2)
\tag{2} \sum_{i=1}^m{\frac{\partial h_i}{\partial x_k}\frac{\partial f}{\partial x_i}} +\frac{\partial f}{\partial x_k}=0
i=1∑m∂xk∂hi∂xi∂f+∂xk∂f=0(2)由隐函数存在定理,令
J
=
[
∂
g
1
∂
x
1
⋯
∂
g
1
∂
x
m
⋯
⋯
⋯
∂
g
m
∂
x
1
⋯
∂
g
m
∂
x
m
]
J=\left[ \begin{matrix} \frac{\partial g_1}{\partial x_1}&\cdots&\frac{\partial g_1}{\partial x_m}\\ \cdots&\cdots&\cdots\\ \frac{\partial g_m}{\partial x_1}&\cdots&\frac{\partial g_m}{\partial x_m} \end{matrix} \right]
J=⎣⎡∂x1∂g1⋯∂x1∂gm⋯⋯⋯∂xm∂g1⋯∂xm∂gm⎦⎤由(2),就有
−
[
∂
f
∂
x
1
⋯
∂
f
∂
x
m
]
J
−
1
[
∂
g
1
∂
x
k
⋯
∂
g
m
∂
x
k
]
+
∂
f
∂
x
k
=
0
(2)
\tag{2} -\left[ \begin{matrix} \frac{\partial f}{\partial x_1}&\cdots&\frac{\partial f}{\partial x_m} \end{matrix} \right]J^{-1} \left[ \begin{matrix} \frac{\partial g_1}{\partial x_k}\\ \cdots\\ \frac{\partial g_m}{\partial x_k} \end{matrix} \right] +\frac{\partial f}{\partial x_k} = 0
−[∂x1∂f⋯∂xm∂f]J−1⎣⎡∂xk∂g1⋯∂xk∂gm⎦⎤+∂xk∂f=0(2)令
λ
=
[
λ
1
⋯
λ
m
]
=
−
[
∂
f
∂
x
1
⋯
∂
f
∂
x
m
]
J
−
1
\lambda = \left[ \begin{matrix} \lambda_1&\cdots&\lambda_m \end{matrix} \right] =-\left[ \begin{matrix} \frac{\partial f}{\partial x_1}&\cdots&\frac{\partial f}{\partial x_m} \end{matrix} \right]J^{-1}
λ=[λ1⋯λm]=−[∂x1∂f⋯∂xm∂f]J−1代入到(3)中,就有
∂
f
∂
x
k
+
∑
i
=
1
m
λ
i
∂
g
i
∂
x
k
=
0
\frac{\partial f}{\partial x_k} +\sum_{i=1}^m{\lambda_i\frac{\partial g_i}{\partial x_k}}=0
∂xk∂f+i=1∑mλi∂xk∂gi=0当然,
k
=
1
,
⋯
,
m
k=1,\cdots,m
k=1,⋯,m时
J
−
1
[
∂
g
1
∂
x
k
⋯
∂
g
m
∂
x
k
]
J^{-1} \left[ \begin{matrix} \frac{\partial g_1}{\partial x_k}\\ \cdots\\ \frac{\partial g_m}{\partial x_k} \end{matrix} \right]
J−1⎣⎡∂xk∂g1⋯∂xk∂gm⎦⎤是线性方程组
J
x
=
[
∂
g
1
∂
x
k
⋯
∂
g
m
∂
x
k
]
Jx = \left[ \begin{matrix} \frac{\partial g_1}{\partial x_k}\\ \cdots\\ \frac{\partial g_m}{\partial x_k} \end{matrix} \right]
Jx=⎣⎡∂xk∂g1⋯∂xk∂gm⎦⎤的解,观察
J
J
J的构造,就有
J
−
1
[
∂
g
1
∂
x
k
⋯
∂
g
m
∂
x
k
]
=
e
k
J^{-1} \left[ \begin{matrix} \frac{\partial g_1}{\partial x_k}\\ \cdots\\ \frac{\partial g_m}{\partial x_k} \end{matrix} \right] =e_k
J−1⎣⎡∂xk∂g1⋯∂xk∂gm⎦⎤=ek即除了第
k
k
k个变元为1外,其余变元都为0,因此(3)也成立,而(3就相当于以下函数分别对
x
1
,
⋯
,
x
n
x_1,\cdots,x_n
x1,⋯,xn求偏导并等于0
L
(
x
1
,
⋯
,
x
n
,
λ
1
,
⋯
,
λ
m
)
=
f
(
x
1
,
⋯
,
x
n
)
+
∑
i
=
1
m
λ
i
g
i
(
x
1
,
⋯
,
x
n
)
L(x_1,\cdots,x_n,\lambda_1,\cdots,\lambda_m)=f(x_1,\cdots,x_n)+\sum_{i=1}^m{\lambda_i g_i(x_1,\cdots,x_n)}
L(x1,⋯,xn,λ1,⋯,λm)=f(x1,⋯,xn)+i=1∑mλigi(x1,⋯,xn)在结合条件,取条件极值的必要条件是以上函数对各变元(包括
λ
\lambda
λ)的偏导数都为0,因而称为拉格朗日乘数法。但是,以上只是取条件极值的必要条件,还不能确认该点是条件极值点。确认条件极值点,一般来讲有两种方法,第一,利用条件海色矩阵,第二,利用最值的存在性。