背景
V4L2(Video for Linux Two)是Linux内核自带的一部分,专门用于处理视频设备的管理和控制。 V4L2框架提供了统一的API和抽象层,使得开发者可以编写通用的视频驱动程序,同时使用户空间的应用程序能够轻松地访问和控制视频设备。在linux的开发板上,为了对符合UVC协议的摄像头进行视频或图像采集时,若不方便安装第三库,可以使用linux内核自带的V4L2框架进行处理。
V4L2视频采集
如下代码来自电子论坛,能够帮助我们采集uvc摄像头的图像,保存为.bmp。
在虚拟机中aarch64交叉编译得到可执行文件 V4L2_VideoCapture,不知道如何配置交叉编译的,可以查看我的其他博文。执行函数
#videoXX是你的设备号,我的是video36,使用命令gst-device-monitor-1.0可进行查询
./V4L2_VideoCapture /dev/videoXX
主要过程包含了
- v4l2设备的初始化。初始化中包括了打开相机,设置格式、分辨率、帧率,申请buffer空间等准备工作
- 数据采集。使用ioctl从队列中取出数据,拷贝副本,然后把原始数据再放回去
- 数据格式转换。如YUYV格式转换为RGB,源代码出处的转换公式有一处错误,本文已进行了修正。
- 保存图像
- 释放环境
// V4L2_VideoCapture.cpp
#include <fcntl.h>
#include <linux/videodev2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#define _UVC_CAM_HEIGHT (480)
#define _UVC_CAM_WIDTH (640)
#define IMAGEHEIGHT _UVC_CAM_HEIGHT
#define IMAGEWIDTH _UVC_CAM_WIDTH
#define NB_BUFFER 4
struct vdIn {
int fd;
char* videodevice;
// v4l2
struct v4l2_capability cap;
struct v4l2_format fmt;
struct v4l2_fmtdesc fmtdesc;
struct v4l2_streamparm setfps;
struct v4l2_requestbuffers rb;
void* mem[NB_BUFFER];
int memlength[NB_BUFFER];
unsigned char* framebuffer;
int framesizeIn;
int width;
int height;
int fps;
FILE* fp_bmp;
};
//14byte文件头
typedef struct
{
unsigned char cfType[2]; //文件类型,"BM"(0x4D42)
unsigned int cfSize; //文件大小(字节)
unsigned int cfReserved; //保留,值为0
unsigned int cfoffBits; //数据区相对于文件头的偏移量(字节)
} __attribute__((packed)) BITMAPFILEHEADER;
//40byte信息头
typedef struct
{
unsigned int ciSize; //BITMAPFILEHEADER所占的字节数
unsigned int ciWidth; //宽度
unsigned int ciHeight; //高度
unsigned short int ciPlanes; //目标设备的位平面数,值为1
unsigned short int ciBitCount; //每个像素的位数
char ciCompress[4]; //压缩说明
unsigned int ciSizeImage; //用字节表示的图像大小,该数据必须是4的倍数
unsigned int ciXPelsPerMeter; //目标设备的水平像素数/米
unsigned int ciYPelsPerMeter; //目标设备的垂直像素数/米
unsigned int ciClrUsed; //位图使用调色板的颜色数
unsigned intciClrImportant; //指定重要的颜色数,当该域的值等于颜色数时(或者等于0时),表示所有颜色都一样重要
} __attribute__((packed)) BITMAPINFOHEADER;
typedef struct
{
unsigned char blue;
unsigned char green;
unsigned char red;
} __attribute__((packed)) PIXEL; //颜色模式RGB
/* Private function prototypes -----------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static struct vdIn uvc_cam;
static unsigned char rgb888_buffer[IMAGEWIDTH * IMAGEHEIGHT * 3];
/* Global variables ---------------------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
void yuyv_to_rgb888(void)
{
int i, j;
unsigned char y1, y2, u, v;
int r1, g1, b1, r2, g2, b2;
unsigned char* pointer;
double rbase = 0;
double gbase = 0;
double bbase = 0;
pointer = uvc_cam.framebuffer;
for (i = 0; i < IMAGEHEIGHT; i++) {
for (j = 0; j < (IMAGEWIDTH / 2); j++) {
y1 = *(pointer + ((i * (IMAGEWIDTH / 2) + j) << 2));
u = *(pointer + ((i * (IMAGEWIDTH / 2) + j) << 2) + 1);
y2 = *(pointer + ((i * (IMAGEWIDTH / 2) + j) << 2) + 2);
v = *(pointer + ((i * (IMAGEWIDTH / 2) + j) << 2) + 3);
rbase = 1.042 * (v - 128);
gbase = 0.34414 * (u - 128) + 0.71414 * (v - 128);
bbase = 1.772 * (u - 128);
r1 = y1 + rbase;
g1 = y1 - gbase;
b1 = y1 + bbase;
r2 = y2 + rbase;
g2 = y2 - gbase;
b2 = y2 + bbase;
if (r1 > 255)
r1 = 255;
else if (r1 < 0)
r1 = 0;
if (b1 > 255)
b1 = 255;
else if (b1 < 0)
b1 = 0;
if (g1 > 255)
g1 = 255;
else if (g1 < 0)
g1 = 0;
if (r2 > 255)
r2 = 255;
else if (r2 < 0)
r2 = 0;
if (b2 > 255)
b2 = 255;
else if (b2 < 0)
b2 = 0;
if (g2 > 255)
g2 = 255;
else if (g2 < 0)
g2 = 0;
*(rgb888_buffer + ((IMAGEHEIGHT - 1 - i) * (IMAGEWIDTH / 2) + j) * 6) = (unsigned char)b1;
*(rgb888_buffer + ((IMAGEHEIGHT - 1 - i) * (IMAGEWIDTH / 2) + j) * 6 + 1) = (unsigned char)g1;
*(rgb888_buffer + ((IMAGEHEIGHT - 1 - i) * (IMAGEWIDTH / 2) + j) * 6 + 2) = (unsigned char)r1;
*(rgb888_buffer + ((IMAGEHEIGHT - 1 - i) * (IMAGEWIDTH / 2) + j) * 6 + 3) = (unsigned char)b2;
*(rgb888_buffer + ((IMAGEHEIGHT - 1 - i) * (IMAGEWIDTH / 2) + j) * 6 + 4) = (unsigned char)g2;
*(rgb888_buffer + ((IMAGEHEIGHT - 1 - i) * (IMAGEWIDTH / 2) + j) * 6 + 5) = (unsigned char)r2;
}
}
printf("yuyv to rgb888 done\n");
}
int v4l2_init(void)
{
int i = 0;
int ret;
struct v4l2_buffer buf;
// 1. open cam
if ((uvc_cam.fd = open(uvc_cam.videodevice, O_RDWR)) == -1) {
printf("ERROR opening V4L interface\n");
return -1;
}
// 2. querycap
memset(&uvc_cam.cap, 0, sizeof(struct v4l2_capability));
ret = ioctl(uvc_cam.fd, VIDIOC_QUERYCAP, &uvc_cam.cap);
if (ret < 0) {
printf("Error opening device %s: unable to query device.\n", uvc_cam.videodevice);
return -1;
}
else {
printf("driver:\t\t%s\n", uvc_cam.cap.driver);
printf("card:\t\t%s\n", uvc_cam.cap.card);
printf("bus_info:\t%s\n", uvc_cam.cap.bus_info);
printf("version:\t%d\n", uvc_cam.cap.version);
printf("capabilities:\t%x\n", uvc_cam.cap.capabilities);
if ((uvc_cam.cap.capabilities & V4L2_CAP_VIDEO_CAPTURE) == V4L2_CAP_VIDEO_CAPTURE) {
printf("%s: \tsupports capture.\n", uvc_cam.videodevice);
}
if ((uvc_cam.cap.capabilities & V4L2_CAP_STREAMING) == V4L2_CAP_STREAMING) {
printf("%s: \tsupports streaming.\n", uvc_cam.videodevice);
}
}
// 3. set format in
// 3.1 enum fmt
printf("\nSupport format:\n");
memset(&uvc_cam.fmtdesc, 0, sizeof(struct v4l2_fmtdesc));
uvc_cam.fmtdesc.index = 0;
uvc_cam.fmtdesc.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
while (ioctl(uvc_cam.fd, VIDIOC_ENUM_FMT, &uvc_cam.fmtdesc) != -1) {
printf("\t%d.%s\n", uvc_cam.fmtdesc.index + 1, uvc_cam.fmtdesc.description);
uvc_cam.fmtdesc.index++;
}
// 3.2 set fmt
memset(&uvc_cam.fmt, 0, sizeof(struct v4l2_format));
uvc_cam.fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
uvc_cam.fmt.fmt.pix.width = uvc_cam.width;
uvc_cam.fmt.fmt.pix.height = uvc_cam.height;
uvc_cam.fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
uvc_cam.fmt.fmt.pix.field = V4L2_FIELD_ANY;
ret = ioctl(uvc_cam.fd, VIDIOC_S_FMT, &uvc_cam.fmt);
if (ret < 0) {
printf("Unable to set format\n");
return -1;
}
// 3.3 get fmt
ret = ioctl(uvc_cam.fd, VIDIOC_G_FMT, &uvc_cam.fmt);
if (ret < 0) {
printf("Unable to get format\n");
return -1;
}
else {
printf("\nfmt.type:\t\t%d\n", uvc_cam.fmt.type);
printf("pix.pixelformat:\t%c%c%c%c\n", uvc_cam.fmt.fmt.pix.pixelformat & 0xFF, (uvc_cam.fmt.fmt.pix.pixelformat >> 8) & 0xFF, (uvc_cam.fmt.fmt.pix.pixelformat >> 16) & 0xFF, (uvc_cam.fmt.fmt.pix.pixelformat >> 24) & 0xFF);
printf("pix.height:\t\t%d\n", uvc_cam.fmt.fmt.pix.height);
printf("pix.width:\t\t%d\n", uvc_cam.fmt.fmt.pix.width);
printf("pix.field:\t\t%d\n", uvc_cam.fmt.fmt.pix.field);
}
// 4. set fps
memset(&uvc_cam.setfps, 0, sizeof(struct v4l2_streamparm));
uvc_cam.setfps.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
uvc_cam.setfps.parm.capture.timeperframe.numerator = 1;
uvc_cam.setfps.parm.capture.timeperframe.denominator = 25;
ret = ioctl(uvc_cam.fd, VIDIOC_S_PARM, &uvc_cam.setfps);
if (ret < 0) {
printf("Unable to set frame rate\n");
return -1;
}
else {
printf("set fps OK!\n");
}
ret = ioctl(uvc_cam.fd, VIDIOC_G_PARM, &uvc_cam.setfps);
if (ret < 0) {
printf("Unable to get frame rate\n");
return -1;
}
else {
printf("get fps OK:\n");
printf("timeperframe.numerator : %d\n", uvc_cam.setfps.parm.capture.timeperframe.numerator);
printf("timeperframe.denominator: %d\n", uvc_cam.setfps.parm.capture.timeperframe.denominator);
printf("set fps : %d\n", 1 * uvc_cam.setfps.parm.capture.timeperframe.denominator / uvc_cam.setfps.parm.capture.timeperframe.numerator);
}
// 5. enum framesizes
while (1) {
struct v4l2_fmtdesc fmtdesc;
memset(&fmtdesc, 0, sizeof(struct v4l2_fmtdesc));
fmtdesc.index = i++;
fmtdesc.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (ioctl(uvc_cam.fd, VIDIOC_ENUM_FMT, &fmtdesc) < 0) {
break;
}
printf("Supported format: %s\n", fmtdesc.description);
struct v4l2_frmsizeenum fsenum;
memset(&fsenum, 0, sizeof(struct v4l2_frmsizeenum));
fsenum.pixel_format = uvc_cam.fmtdesc.pixelformat;
int j = 0;
while (1) {
fsenum.index = j;
j++;
if (ioctl(uvc_cam.fd, VIDIOC_ENUM_FRAMESIZES, &fsenum) == 0) {
if (uvc_cam.fmt.fmt.pix.pixelformat == fmtdesc.pixelformat) {
printf("\tSupported size with the current format: %dx%d\n", fsenum.discrete.width, fsenum.discrete.height);
}
else {
printf("\tSupported size: %dx%d\n", fsenum.discrete.width, fsenum.discrete.height);
}
}
else {
break;
}
}
}
// 6. request buffers
memset(&uvc_cam.rb, 0, sizeof(struct v4l2_requestbuffers));
uvc_cam.rb.count = NB_BUFFER;
uvc_cam.rb.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
uvc_cam.rb.memory = V4L2_MEMORY_MMAP;
ret = ioctl(uvc_cam.fd, VIDIOC_REQBUFS, &uvc_cam.rb);
if (ret < 0) {
printf("Unable to allocate buffers\n");
return -1;
}
// 6.1 map the buffers
for (i = 0; i < NB_BUFFER; i++) {
memset(&buf, 0, sizeof(struct v4l2_buffer));
buf.index = i;
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
ret = ioctl(uvc_cam.fd, VIDIOC_QUERYBUF, &buf);
if (ret < 0) {
printf("Unable to query buffer\n");
return -1;
}
uvc_cam.mem[i] = mmap(NULL, buf.length, PROT_READ | PROT_WRITE, MAP_SHARED, uvc_cam.fd, buf.m.offset);
if (uvc_cam.mem[i] == MAP_FAILED) {
printf("Unable to map buffer\n");
return -1;
}
uvc_cam.memlength[i] = buf.length;
}
// 6.2 queue the buffers.
for (i = 0; i < NB_BUFFER; i++) {
memset(&buf, 0, sizeof(struct v4l2_buffer));
buf.index = i;
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
ret = ioctl(uvc_cam.fd, VIDIOC_QBUF, &buf);
if (ret < 0) {
printf("Unable to queue buffer\n");
return -1;
}
}
// 7. malloc yuyv buf
uvc_cam.framesizeIn = uvc_cam.width * uvc_cam.height << 1; // w * h * 2
uvc_cam.framebuffer = (unsigned char*)calloc(1, (size_t)uvc_cam.framesizeIn);
if (uvc_cam.framebuffer == NULL) {
printf("err calloc memory\n");
return -1;
}
printf("init %s \t[OK]\n", uvc_cam.videodevice);
return 0;
}
void v4l2_exit(void)
{
free(uvc_cam.framebuffer);
close(uvc_cam.fd);
}
int v4l2_enable(void)
{
int type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
int ret;
ret = ioctl(uvc_cam.fd, VIDIOC_STREAMON, &type);
if (ret < 0) {
printf("Unable to start capture\n");
return ret;
}
printf("start capture\n");
return 0;
}
int v4l2_disable(void)
{
int type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
int ret;
ret = ioctl(uvc_cam.fd, VIDIOC_STREAMOFF, &type);
if (ret < 0) {
printf("Unable to stop capture\n");
return ret;
}
printf("stop capture\n");
return 0;
}
int v4l2_uvc_grap(void)
{
int ret;
struct v4l2_buffer buf;
memset(&buf, 0, sizeof(struct v4l2_buffer));
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
ret = ioctl(uvc_cam.fd, VIDIOC_DQBUF, &buf);
if (ret < 0) {
printf("Unable to dequeue buffer\n");
exit(1);
}
memcpy(uvc_cam.framebuffer, uvc_cam.mem[buf.index], uvc_cam.framesizeIn);
ioctl(uvc_cam.fd, VIDIOC_QBUF, &buf);
printf("buf index: %d\n", buf.index);
return 0;
}
int save_bmp(char* bmp_name)
{
FILE* fp;
BITMAPFILEHEADER bf;
BITMAPINFOHEADER bi;
printf("save bmp function\n");
fp = fopen(bmp_name, "wb");
if (fp == NULL) {
printf("open errror\n");
return (-1);
}
//Set BITMAPINFOHEADER
memset(&bi, 0, sizeof(BITMAPINFOHEADER));
bi.ciSize = 40;
bi.ciWidth = IMAGEWIDTH;
bi.ciHeight = IMAGEHEIGHT;
bi.ciPlanes = 1;
bi.ciBitCount = 24;
bi.ciSizeImage = IMAGEWIDTH * IMAGEHEIGHT * 3;
//Set BITMAPFILEHEADER
memset(&bf, 0, sizeof(BITMAPFILEHEADER));
bf.cfType[0] = 'B';
bf.cfType[1] = 'M';
bf.cfSize = 54 + bi.ciSizeImage;
bf.cfReserved = 0;
bf.cfoffBits = 54;
fwrite(&bf, 14, 1, fp);
fwrite(&bi, 40, 1, fp);
fwrite(rgb888_buffer, bi.ciSizeImage, 1, fp);
printf("save %s done\n", bmp_name);
fclose(fp);
return 0;
}
int main(int argc, char const* argv[])
{
char vdname[20];
printf("\n----- v4l2 savebmp app start ----- \n");
if (argc < 2) {
printf("need:/dev/videox\n");
printf("like:%s /dev/video1\n", argv[0]);
printf("app exit.\n\n");
exit(1);
}
snprintf(vdname, 20, argv[1]);
memset(&uvc_cam, 0, sizeof(struct vdIn));
uvc_cam.videodevice = vdname;
printf("using: \t\t%s\n", uvc_cam.videodevice);
uvc_cam.width = _UVC_CAM_WIDTH;
uvc_cam.height = _UVC_CAM_HEIGHT;
// 1. init cam
if (v4l2_init() < 0) {
goto app_exit;
}
v4l2_enable();
usleep(5 * 1000);
// 2. grap uvc
v4l2_uvc_grap();
yuyv_to_rgb888();
// 3. save bmp
save_bmp("./uvc_grap.bmp");
app_exit:
printf("app exit.\n\n");
v4l2_exit();
return 0;
}