掌握GPT-4 和 ChatGPT 的 API 的使用方法,以便有效地将它们集成到 Python 应用程序中。首先,需要了解 OpenAI Playground。这将使你在编写代码之前更好地了解模型。接着,需要学习 OpenAI Python 库。这部分内容包括登录信息和⼀个简单的 Hello World 示例。然后,需要学习创建和发送 API 请求的过程,并了解如何处理 API 响应。这将确保你知道如何解释这些 API 返回的数据。最后,还会介绍诸如安全最佳实践和成本管理等考虑因素。随着学习的深入,我们将获得实用的知识,这对使用 GPT-4 和 ChatGPT 进行 Python 开发非常有帮助。在继续阅读之前,请查看 OpenAI 的使用规则。如果还没有账户,请在 OpenAI 主页上创建⼀个。
基本概念
OpenAI 提供了多个专为不同任务设计的模型,每个模型都有自己的定价。接下来,我们将详细地对比这些模型并讨论如何根据需求选择模型。需要注意的是,模型的设计目的——无论是用于补全文本、聊天还是编辑——会影响你如何使用其 API。比如,GPT-4 和 ChatGPT 背后的模型基于聊天目的,并使用聊天端点。提示词不仅适用于 OpenAI API,而且是所有 LLM 的入口点。简单地说,提示词就是用户发送给模型的输入文本,用于指导模型执行特定任务。对于 GPT-4 和 ChatGPT 背后的模型,提示词具有聊天格式,输入消息和输出消息存储在列表中。除了提示词,还有标记。标记是词或词的⼀部分。据粗略估计,100 个标记大约相当于 75 个英语单词。对 OpenAI 模型的请求是根据所使用的标记数量来定价的,也就是说,调用 API 的成本取决于输入文本和输出文本的长度。