Bootstrap

人工智能--基于循环神经网络的新闻话题分类

目录

一、学习目标

二、学习内容

三、学习过程

四、源码

五、学习产出


一、学习目标

  1. 理解循环神经网络RNN的基本原理。
  2. 掌握利用循环神经网络进行文本分类的方法。

二、学习内容

利用循环神经网络进行新闻话题分类的代码,设置Embedding的trainable=True,并调整网络结构,看是否可以提高识别率。


三、学习过程

经过不断的调参,得出下表结果,当设置Embeddingtrainable=True时,并经过下表的参数调整,识别率有所下降。

SimpleRNN:

optimizer

lr

batch_ size

trainable

epochs

验证集识别率

Adam

0.001

512

False

10

0.4666

Adam

0.001

512

True

10

0.4974

RMSprop

0.001

512

True

10

0.5083

SGD

0.001

512

True

10

0.2692

Lstm

optimizer

lr

batch_ size

trainable

epochs

验证集识别率

Adam

0.001

512

False

10

0.5904

Adam

0.001

512

True

10

0.5670

RMSprop

0.001

512

True

10

0.5940

SGD

0.001

512

True

10

0.2674

GRU:

optimizer

lr

batch_ size

trainable

epochs

验证集识别率

Adam

0.001

512

False

10

0.5973

Adam

0.001

512

True

10

0.5518

RMSprop

0.001

512

True

10

0.5916

SGD

0.001

512

True

10

0.2800

网络结构:

优化器为Adamtrainable=True各种循环神经网络的识别率:

SimpleRNN

LSTM

GRU

优化器为RMSproptrainable=True各种循环神经网络的识别率:

SimpleRNN

LSTM

GRU

优化器为SGDtrainable=True各种循环神经网络的识别率:

SimpleRNN

LSTM

GRU

可见,SGD并不适合当做循环神经网络的优化器。


四、源码

# In[1]: 读取新闻话题分类数据
import pandas as pd
df = pd.read_json(r'D:\Cadabra_tools002\course_data\News_Category_Dataset.json', lines=True)
df.head()

# In[2]: 预处理,合并 "WORLDPOST"和"THE WORLDPOST"两种类别
df.category = df.category.map(lambda x:"WORLDPOST" if x == "THE WORLDPOST" else x)
categories = df.groupby('category')
print("total categories: ", categories.ngroups)
print(categories.size())

# In[3]: 将单词进行标号
from keras.preprocessing import sequence
from keras.preprocessing.text import Tokenizer

# 将标题和正文合并
df['text'] = df.headline + " " + df.short_description

# 将单词进行标号
tokenizer = Tokenizer()
tokenizer.fit_on_texts(df.text)
X = tokenizer.texts_to_sequences(df.text)
df['words'] = X

#记录每条数据的单词数
df['word_length'] = df.words.apply(lambda i: len(i))

#清除单词数不足5个的数据条目
df = df[df.word_length >= 5]
df.word_length.describe()

# In[4]: 将类别进行编号
maxlen = 50
X = list(sequence.pad_sequences(df.words, maxlen=maxlen))

# 将类别进行编号, 
categories = df.groupby('category').size().index.tolist()
category_int = {}
int_category = {}
for i, k in enumerate(categories):
    category_int.update({k:i})  # 类别 -> 编号
    int_category.update({i:k})  # 编号 -> 类别

df['c2id'] = df['category'].apply(lambda x: category_int[x])

# In[5]: 随机选取训练样本
import numpy as np
import keras.utils as utils
from sklearn.model_selection import train_test_split

X = np.array(X)
Y = utils.to_categorical(list(df.c2id))

# 将数据分成两部分,随机取80%用于训练,20%用于测试
seed = 29 # 随机种子
x_train, x_val, y_train, y_val = train_test_split(X, Y, test_size=0.2, random_state=seed)

# In[6]: 加载预先训练好的单词向量
EMBEDDING_DIM = 100
embeddings_index = {}
f = open(r'D:\Cadabra_tools002\course_data\glove.6B.100d.txt',errors='ignore') # 每个单词用100个数字的向量表示
for line in f:
    values = line.split()
    word = values[0]
    coefs = np.asarray(values[1:], dtype='float32')
    embeddings_index[word] = coefs
f.close()

print('Total %s word vectors.' %len(embeddings_index))  #399913

# In[7]: 构造Embedding层,并用预训练好的单词向量初始化,注意该层不用训练
from keras.initializers import Constant
from keras.layers.embeddings import Embedding

word_index = tokenizer.word_index 
embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
    embedding_vector = embeddings_index.get(word)
    #根据单词挑选出对应向量
    if embedding_vector is not None:
        embedding_matrix[i] = embedding_vector
        
embedding_layer = Embedding(len(word_index)+1, EMBEDDING_DIM, 
                           embeddings_initializer=Constant(embedding_matrix),
                           input_length = maxlen,
                            trainable=True #可改为True
                           )

# In[8]: 构造神经网络并训练,对单词向量进行分类
from keras import optimizers
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten

model = Sequential()
model.add(embedding_layer) # 注意该层的 trainable=False
model.add(Flatten())
model.add(Dense(64, activation='relu')) #
#当结果是输出多个分类的概率时,用softmax激活函数,它将为30个分类提供不同的可能性概率值
model.add(Dense(len(int_category), activation='softmax'))

#对于输出多个分类结果,最好的损失函数是categorical_crossentropy
optimizer = optimizers.Adam(lr=0.001)#调整识别率
#optimizer = optimizers.RMSprop(lr=0.001)#调整识别率
model.compile(optimizer, loss='categorical_crossentropy', metrics=['acc'])
model.summary()

history = model.fit(x_train, y_train, epochs=3, validation_data=(x_val, y_val), batch_size=512)
# val_accuracy: 0.4611
# 识别率并不高,这是因为全连接网络不适合用于识别单词序列  

# In[9]: 绘制训练过程中识别率和损失的变化
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)

plt.title('Training and validation accuracy')
plt.plot(epochs, acc, 'red', label='Training acc')
plt.plot(epochs, val_acc, 'blue', label='Validation acc')
plt.legend()

plt.figure()
plt.title('Training and validation loss')
plt.plot(epochs, loss, 'red', label='Training loss')
plt.plot(epochs, val_loss, 'blue', label='Validation loss')
plt.legend()

plt.show()

# In[10]: 使用循环神经网络 RNN 进行分类
from keras.layers import SimpleRNN
model = Sequential()
model.add(embedding_layer)
model.add(SimpleRNN(64)) #可改变单词向量的维度
#model.add(Dense(32, activation='Relu'))

model.add(Dense(len(int_category), activation='softmax'))

optimizer = optimizers.Adam(lr=0.001)#调整识别率
#optimizer = optimizers.RMSprop(lr=0.001)#调整识别率
#optimizer = optimizers.SGD(lr=0.001)#调整识别率
model.compile(optimizer, loss='categorical_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), batch_size=512)
# val_accuracy: 0.4486

# 绘制训练过程中识别率和损失的变化
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)

plt.title('Training and validation accuracy')
plt.plot(epochs, acc, 'red', label='Training acc')
plt.plot(epochs, val_acc, 'blue', label='Validation acc')
plt.legend()
plt.show()

# In[11]: long short term memory(长短期记忆网络)
from keras.layers import LSTM
model = Sequential()
model.add(embedding_layer)
model.add(LSTM(64,activation='relu',return_sequences=True)) #输出每一个句子,激活函数换成sigmoid,或者activation='relu'
model.add(LSTM(32)) #再添加一个LSTM,识别率反而下降
#model.add(Flatten()) #进行展平 
model.add(Dense(len(int_category), activation='softmax')) #
#optimizer = optimizers.RMSprop(lr=0.001)#调整识别率
optimizer = optimizers.Adam(lr=0.001)#调整识别率
#optimizer = optimizers.SGD(lr=0.001)#调整识别率
model.compile(optimizer, loss='categorical_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), batch_size=512)
# val_acc: 0.5920

# 绘制训练过程中识别率和损失的变化
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)

plt.title('Training and validation accuracy')
plt.plot(epochs, acc, 'red', label='Training acc')
plt.plot(epochs, val_acc, 'blue', label='Validation acc')
plt.legend()
plt.show()

# In[12]: Gate Recurrent Unit (门控循环单元)
from keras.layers import GRU, Conv1D, MaxPooling1D
model = Sequential()
model.add(embedding_layer)
#使用一维卷积网络切割输入数据,参数5表示每各个单词作为切割小段
model.add(Conv1D(64, 5, activation='relu'))
#参数3表示,上层传下来的数据中,从每3个数值中抽取最大值
model.add(MaxPooling1D(3))
#添加一个有记忆性的GRU层,其原理与LSTM相同,运行速度更快,准确率有所降低
model.add(GRU(64, dropout=0.1))
model.add(Dense(len(int_category), activation='softmax'))
#optimizer = optimizers.RMSprop(lr=0.001)#调整识别率
optimizer = optimizers.Adam(lr=0.001)#调整识别率
#optimizer = optimizers.SGD(lr=0.001)#调整识别率
model.compile(optimizer, loss='categorical_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=5, validation_data=(x_val, y_val), batch_size=512)
# val_acc: 0.5741

# 绘制训练过程中识别率和损失的变化
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)

plt.title('Training and validation accuracy')
plt.plot(epochs, acc, 'red', label='Training acc')
plt.plot(epochs, val_acc, 'blue', label='Validation acc')
plt.legend()
plt.show()

源码下载 


五、学习产出

  1. LSTM的识别率到了60%就已经封顶了,调参试过很多次,识别率仍无法上去,迭代次数过多也会造成识别率的下降。
;