环境
提示:硬件环境Mac m1
python:3.8
opencv-python: 3.4.8.29
pytesseract: 0.3.9
cnocr: 2.1.2.1
前言
这里利用opencv 做身份证照片处理,为识别增加准确度。利用pytesseract 做文字提取,由于是识别身份证,需要提前下载好中文字体包。
正面识别
代码如下(示例):
# -*- coding: utf-8 -*-
import os, cv2
import sys, numpy as np
import math
import include.binaryzation as bz
import include.functions as func
import copy
import fileutil
DEBUG = False
CARD_NAME = ''
CARD_SEX = ''
CARD_ETHNIC = ''
CARD_YEAR = ''
CARD_MON = ''
CARD_DAY = ''
CARD_ADDR = ''
# 身份证号码
CARD_NUM = ''
# from imutils.perspective import four_point_transform
# parser = argparse.ArgumentParser()
# parser.add_argument('image', help='path to image file')
# args = parser.parse_args()
#
_localDir = os.path.dirname(__file__)
_curpath = os.path.normpath(os.path.join(os.getcwd(), _localDir))
curpath = _curpath
def show(image, window_name):
cv2.namedWindow(window_name, 0)
cv2.imshow(window_name, image)
# 0任意键终止窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
def getCardNum(img, kenalRect):
"""
识别并提取身份证号码
:return:
"""
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
thr = bz.myThreshold().getMinimumThreshold(gray)
ret, binary = cv2.threshold(gray, thr, 255, cv2.THRESH_BINARY)
# 3. 膨胀和腐蚀操作的核函数
kenal = cv2.getStructuringElement(cv2.MORPH_RECT, (kenalRect[0], kenalRect[1]))
dilation = cv2.dilate(binary, kenal, iterations=1)
erosion = cv2.erode(dilation, kenal, iterations=1)
# OCR识别
cardNum = func.ocr(erosion)
cardNum = func.is_identi_number(cardNum)
if cardNum:
return cardNum
return False
def getChineseChar(img, kenalRect):
"""
分析汉字区域,并识别提取
:return:
"""
global CARD_NAME
global CARD_SEX
global CARD_ETHNIC
global CARD_YEAR
global CARD_MON
global CARD_DAY
global CARD_ADDR
global CARD_NUM
CARD_NAME = CARD_SEX = CARD_ETHNIC = CARD_YEAR = CARD_MON = CARD_DAY = CARD_ADDR = ''
# 图片大小比例缩小处理,为了加快性能
h, w, _ = img.shape
min_w = 200
scale = 1 # min(1., w * 1. / min_w)
h_proc = int(h * 1. / scale)
w_proc = int(w * 1. / scale)
im_dis = cv2.resize(img, (w_proc, h_proc))
# 灰度处理
gray = cv2.cvtColor(im_dis, cv2.COLOR_BGR2GRAY)
# 2. 形态学变换的预处理,得到可以查找矩形的图片
mybz = bz.myThreshold()
algos = mybz.getAlgos()
for i in algos:
# 获取阈值
thr = getattr(mybz, algos[i])(gray)
# thr = mybz.getMinimumThreshold(gray)
# func.showImg(gray, 'gray')
# 膨胀和腐蚀
ret, binary = cv2.threshold(gray, thr, 255, cv2.THRESH_BINARY)
# 获取行起始坐标
boundaryCoors = func.horizontalProjection(binary)
if not boundaryCoors:
continue
# print(boundaryCoors)
# 垂直投影对行内字符进行切割
erosion = cb = copy.copy(binary)
# show(binary, 'binary')
coors = {} # 信息所对应的坐标
textLine = 0 # 有效文本行序号
for LineNum, boundaryCoor in enumerate(boundaryCoors):
if textLine == 2:
kenal1 = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
kenal2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
dilation = cv2.dilate(cb, kenal1, iterations=1)
erosion = cv2.erode(dilation, kenal2, iterations=1)
vertiCoors, text = func.verticalProjection(erosion, boundaryCoor, textLine, img)
if len(vertiCoors) == 0:
continue
if textLine == 0:
CARD_NAME = text
elif textLine == 1:
if text[0] != '男' and text[0] != '女':
CARD_SEX = func.getSexByCardNum(CARD_NUM)
else:
CARD_SEX = text[0]
CARD_ETHNIC = text[1]
elif textLine == 2:
# 为了获取更加精准的值,通过身份证号码规则直接取得出生年月
CARD_YEAR = text[0]
CARD_MON = text[1]
CARD_DAY = text[2]
pass
else:
CARD_ADDR += text
if DEBUG:
fator = 2
for verticoo in vertiCoors:
box = [[verticoo[0] * scale - fator, boundaryCoor[0] * scale - fator],
[verticoo[1] * scale + fator, boundaryCoor[0] * scale - fator],
[verticoo[1] * scale + fator, boundaryCoor[1] * scale + fator],
[verticoo[0] * scale - fator, boundaryCoor[1] * scale + fator],
]
cv2.drawContours(img, [np.int0(box)], 0, (0, 255, 0), 2)
textLine += 1
return
return False
def findChineseCharArea(cardNumPoint1, width, hight):
"""
根据身份证号码的位置推断姓名、性别、名族、出生年月、住址的位置
:param cardNumPoint1: tuple 身份证号码所处的矩形的左上角坐标
:param width: int 身份证号码所处的矩形的宽
:param hight: int 身份证号码所处的矩形的高
:return:
"""
# new_x = int(cardNumPoint1[0] - (width / 18) * 6)
new_x = cardNumPoint1[0] - (width / 18) * 5.5
new_width = int(width / 5 * 4)
box = []
# new_y = cardNumPoint1[1] - hight * 6.5
card_hight = hight / (0.9044 - 0.7976) # 身份证高度
card_y_start = cardNumPoint1[1] - card_hight * 0.7976 # 粗略算出图像中身份证上边界的y坐标
# 为了保证不丢失文字区域,姓名的相对位置保留,以身份证上边界作为起始切割点
# new_y = card_y_start# + card_hight * 0.0967
# 容错因子,防止矩形存在倾斜导致区域重叠
factor = 20
new_y = card_y_start if card_y_start > factor else factor
new_hight = card_hight * (0.7616 - 0.0967) + card_hight * 0.0967
# 文字下边界坐标
new_y_low = (new_y + new_hight) if (new_y + new_hight) <= cardNumPoint1[1] - factor else cardNumPoint1[1] - factor
box.append([new_x, new_y])
box.append([new_x + new_width, new_y])
box.append([new_x + new_width, new_y_low])
box.append([new_x, new_y_low])
box = np.int0(box)
return box
def detect(img):
global CARD_NUM
CARD_NUM = ''
notFound = True
# 1. 转化成灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 2. 遍历二值化阈值算法
algos = bz.myThreshold().getAlgos()
for i in algos:
# 形态学变换的预处理,得到可以查找矩形的图片
dilation = preprocess(gray, algos[i])
# print('dilation',dilation)
# 3. 查找和筛选文字区域
region = findTextRegion(dilation)
# 4. 用绿线画出这些找到的轮廓
angle = 0
for rect in region:
angle = rect[2]
# 识别身份证号码
a, b = rect[1]
if a > b:
width = a
hight = b
pts2 = np.float32([[0, hight], [0, 0], [width, 0], [width, hight]])
else:
width = b
hight = a
angle = 90 + angle
pts2 = np.float32([[width, hight], [0, hight], [0, 0], [width, 0]])
# 透视变换
box = cv2.boxPoints(rect)
pts1 = np.float32(box)
M = cv2.getPerspectiveTransform(pts1, pts2)
cropImg = cv2.warpPerspective(img, M, (int(width), int(hight)))
# show(cropImg, 'cropImg')
# 计算核大小
kenalx = kenaly = int(math.ceil((hight / 100.0)))
CARD_NUM = getCardNum(cropImg, (kenalx, kenaly))
if CARD_NUM:
notFound = False
# 找到身份证号码,然后根据号码区域的倾斜角度,对原图进行旋转变换
if abs(angle) > 10:
sp = img.shape
H = sp[0]
W = sp[1]
M = cv2.getRotationMatrix2D((W / 2, H / 2), angle, 1)
cropImg = cv2.warpAffine(img, M, (W, H))
# cv2.namedWindow("倾斜矫正", cv2.WINDOW_NORMAL)
# cv2.imshow("倾斜矫正", cropImg)
# cv2.waitKey(0)
# 矫正图片地址
global curpath
path = 'tilt_correction.jpg'
newFile = os.path.join(curpath, path)
cv2.imwrite(newFile, cropImg)
return True, '', newFile
# 寻找汉字区域
# 裁剪后的图片
box = cv2.boxPoints(rect)
box = np.int0(box)
cropImg, point, width, hight = func.cropImgByBox(img, box)
box = findChineseCharArea(point, width, hight)
# cv2.drawContours(img, [box], 0, (0, 255, 0), 3)
chiCharArea, point, width, hight = func.cropImgByBox(img, box)
getChineseChar(chiCharArea, (kenalx, kenaly))
# if DEBUG:
# show(cropImg,'cropImg')
# winname = "身份证号码: %s" % (CARD_NUM)
# cv2.namedWindow(winname, cv2.WINDOW_NORMAL)
# cv2.imshow(winname, cropImg)
# cv2.waitKey(0)
break
if notFound:
continue
else:
break
if notFound:
# win32api.MessageBox(0, "无法识别,请换一个分辨率高点的照片~", "错误提示")
return False, '无法识别,请换一个分辨率高点的照片~", "错误提示', ''
# 带轮廓的图片
if DEBUG:
# cv2.namedWindow("img", cv2.WINDOW_NORMAL)
# cv2.imshow("img", img)
key = cv2.waitKey(0)
#
# cv2.destroyAllWindows()
if key != 32:
sys.exit()
if CARD_NUM != '':
# 为了获取更加精准的值,通过身份证号码规则直接取得出生年月
CARD_YEAR, CARD_MON, CARD_DAY = func.getBirthByCardNum(CARD_NUM)
if DEBUG:
info = """
姓名:%s
性别:%s 民族:%s
出生:%s 年 %s 月 %s 日
住址:%s
公民身份号码:%s
""" % (CARD_NAME, CARD_SEX, CARD_ETHNIC, CARD_YEAR, CARD_MON, CARD_DAY, CARD_ADDR, CARD_NUM)
# ret = [CARD_NAME, CARD_SEX, CARD_ETHNIC, CARD_YEAR, CARD_MON, CARD_DAY, CARD_ADDR, CARD_NUM]
ret = {"card_name": CARD_NAME, "CARD_SEX": CARD_SEX, "card_ethnic": CARD_ETHNIC,
"date_time": CARD_YEAR + "-" + CARD_MON + "-" + CARD_DAY, "card_addr": CARD_ADDR, "card_num": CARD_NUM}
return True, ret, ''
else:
return True, '', ''
def calculateElement(img):
# 根据图片大小粗略计算腐蚀 或膨胀所需核的大小
sp = img.shape
width = sp[1] # width(colums) of image
kenaly = math.ceil((width / 400.0) * 12)
kenalx = math.ceil((kenaly / 5.0) * 4)
a = (int(kenalx), int(kenaly))
return a
def preprocess(gray, algoFunc):
# 1. Sobel算子,x方向求梯度
# sobel = cv2.Sobel(gray, cv2.CV_8U, 1, 0, ksize = 3)
# 获取二值化阈值
thr = bz.myThreshold()
# threshold = thr.get1DMaxEntropyThreshold(gray)
threshold = getattr(thr, algoFunc)(gray)
if threshold <= 0:
raise Exception("获取二值化阈值失败")
# 2. 二值化
ret, binary = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY)
# 获取核大小
calculateElement(gray)
# 3. 膨胀和腐蚀操作的核函数
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, calculateElement(gray))
# 微处理去掉小的噪点
dilation = cv2.dilate(binary, element1, iterations=1)
binary = cv2.erode(dilation, element1, iterations=1)
# 文字膨胀与腐蚀使其连成一个整体
erosion = cv2.erode(binary, element2, iterations=1)
dilation = cv2.dilate(erosion, element1, iterations=1)
# show(erosion,'erosion')
# show(dilation,'dilation')
# 7. 存储中间图片
# cv2.namedWindow("binary", cv2.WINDOW_NORMAL)
# cv2.imshow("binary", binary)
# cv2.waitKey(0)
#
# cv2.namedWindow("dilation2", cv2.WINDOW_NORMAL)
# cv2.imshow("dilation2", erosion)
# cv2.waitKey(0)
#
# cv2.namedWindow("dilation2", cv2.WINDOW_NORMAL)
# cv2.imshow("dilation2", dilation)
# cv2.waitKey(0)
cv2.destroyAllWindows()
# sys.exit(0)
return dilation
def findTextRegion(img):
region = []
# 1. 查找轮廓
binary, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 2. 筛选那些面积小的
for i in range(len(contours)):
cnt = contours[i]
# 计算该轮廓的面积
area = cv2.contourArea(cnt)
# 面积小的都筛选掉
if (area < 1000):
continue
# 找到最小的矩形,该矩形可能有方向
rect = cv2.minAreaRect(cnt)
# 计算高和宽
width = rect[1][0]
hight = rect[1][1]
# 筛选那些太细的矩形,留下扁的
if hight > width:
if hight < width * 5:
continue
else:
if width < hight * 5:
continue
region.append(rect)
return region
def nothing(x):
pass
def fushiyupengzhang(pathtoimage):
"""
腐蚀与膨胀动态取值预览
:param pathtoimage:
:return:
"""
img = cv2.imread(pathtoimage)
im_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# sobel = cv2.Sobel(im_gray, cv2.CV_8U, 1, 0, ksize=3)
# 获取二值化阈值
thr = bz.myThreshold()
threshold = thr.getMinimumThreshold(im_gray)
if threshold <= 0:
raise Exception("获取二值化阈值失败")
retval, img = cv2.threshold(im_gray, threshold, 255, cv2.THRESH_BINARY)
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image', img)
cv2.createTrackbar('Er/Di', 'image', 0, 1, nothing)
# 创建腐蚀或膨胀选择滚动条,只有两个值
cv2.createTrackbar('x', 'image', 0, 100, nothing)
# 创建卷积核大小滚动条
cv2.createTrackbar('y', 'image', 0, 100, nothing)
while (1):
s = cv2.getTrackbarPos('Er/Di', 'image')
x = cv2.getTrackbarPos('x', 'image')
y = cv2.getTrackbarPos('y', 'image')
# 分别接收两个滚动条的数据
if x == 0:
x = 1
if y == 0:
y = 1
k = cv2.waitKey(1)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (x, y))
# 根据滚动条数据确定卷积核大小
erroding = cv2.erode(img, kernel, iterations=1)
dilation = cv2.dilate(img, kernel, iterations=1)
if k == 27:
break
# esc键退出
if s == 0:
cv2.imshow('image', erroding)
else:
cv2.imshow('image', dilation)
# 判断是腐蚀还是膨胀
def imgRotation(pathtoimg):
# 图片自动旋正
from PIL import Image
img = Image.open(pathtoimg)
if hasattr(img, '_getexif') and img.getexif() != None:
# 获取exif信息
dict_exif = img._getexif()
if dict_exif.has_key(274):
if dict_exif[274] == 3:
# 顺时针180
new_img = img.rotate(-180)
new_img.save(pathtoimg)
elif dict_exif[274] == 6:
# 顺时针90°
new_img = img.rotate(-90)
new_img.save(pathtoimg)
elif dict_exif[274] == 8:
# 逆时针90°
new_img = img.rotate(90)
new_img.save(pathtoimg)
return None
def enhanceImage(pathtoimg):
from PIL import Image
from PIL import ImageEnhance
# 原始图像
image = Image.open(pathtoimg)
# 对比度增强
enh_con = ImageEnhance.Contrast(image)
contrast = 1.5
image_contrasted = enh_con.enhance(contrast)
image_contrasted.show()
if __name__ == '__main__':
if len(sys.argv) <= 1:
sys.exit("文件路径不能为空")
path = sys.argv[1]
path = fileutil.download_img(path)
if len(path) < 1:
sys.exit('文件获取失败或者文件小于50kb')
pathtoimg = cv2.imread(path)
try:
ret, msg, path, = detect(pathtoimg)
if path != '':
# 读取文件
img = cv2.imread(path)
ret, msg, _ = detect(img)
os.unlink(path)
if ret:
result = [{i: msg[i]} for i in range(len(msg))]
print('result', result)
else:
print({'msg': msg})
else:
if ret:
print({'data': msg})
else:
print({'msg': msg})
except Exception as e:
print('e', e)
背面识别
代码如下(示例):
import cv2, re, math, sys, fileutil
import pytesseract
import numpy as np
import include.binaryzation as bz
DEBUG = False
def show(image, window_name):
pass
# cv2.namedWindow(window_name, 0)
# cv2.imshow(window_name, image)
# 0任意键终止窗口
# cv2.waitKey(0)
# cv2.destroyAllWindows()
def calculateElement(img):
# 根据图片大小粗略计算腐蚀 或膨胀所需核的大小
sp = img.shape
width = sp[1] # width(colums) of image
kenaly = math.ceil((width / 400.0) * 12)
kenalx = math.ceil((kenaly / 5.0) * 4)
a = (int(kenalx), int(kenaly))
return a
def preprocess(gray, algoFunc):
# 1. Sobel算子,x方向求梯度
# sobel = cv2.Sobel(gray, cv2.CV_8U, 1, 0, ksize = 3)
# 获取二值化阈值
thr = bz.myThreshold()
# threshold = thr.get1DMaxEntropyThreshold(gray)
threshold = getattr(thr, algoFunc)(gray)
if threshold <= 0:
raise Exception("获取二值化阈值失败")
# 2. 二值化
ret, binary = cv2.threshold(gray, threshold, 255, cv2.THRESH_BINARY)
# 获取核大小
calculateElement(gray)
# 3. 膨胀和腐蚀操作的核函数
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, calculateElement(gray))
# 微处理去掉小的噪点
dilation = cv2.dilate(binary, element1, iterations=1)
binary = cv2.erode(dilation, element1, iterations=1)
# 文字膨胀与腐蚀使其连成一个整体
erosion = cv2.erode(binary, element2, iterations=1)
dilation = cv2.dilate(erosion, element1, iterations=1)
return dilation
# 缩放函数
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
if __name__ == '__main__':
path = '/Users/zfh/PycharmProjects/ocr-idcard/001.jpg'
if DEBUG:
if len(sys.argv) <= 1:
sys.exit("文件路径不能为空")
path = sys.argv[1]
path = fileutil.download_img(path)
if path:
sys.exit('文件获取失败或者文件小于50kb')
pathtoimg = cv2.imread(path)
img = resize(pathtoimg, width=500, height=400)
# 1. 灰度处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
show(gray, 'gray')
# 2. 遍历二值化阈值算法
blur = cv2.medianBlur(gray, 1)
show(blur, 'blur')
# 2. 遍历二值化阈值算法
algos = bz.myThreshold().getAlgos()
for i in algos:
thr = bz.myThreshold()
threshold_val = getattr(thr, algos[i])(blur)
if threshold_val <= 0:
continue
# 2. 二值化
threshold = cv2.threshold(blur, threshold_val, 255, cv2.THRESH_TRUNC)[1]
show(threshold, 'threshold')
canny = cv2.Canny(threshold, 100, 150)
show(canny, 'canny')
kernel = np.ones((3, 3), np.uint8)
dilate = cv2.dilate(canny, kernel, iterations=5)
show(dilate, "dilate")
width = threshold.shape[0]
height = threshold.shape[1]
if width > height:
threshold = np.rot90(threshold)
show(threshold, 'resize1')
result = pytesseract.image_to_string(threshold, lang='chi_sim+eng')
ret = re.findall(r"\d+", result)
if len(ret[0]) != 4:
continue
if len(ret[1]) != 2:
continue
if len(ret[2]) != 2:
continue
if len(ret[3]) != 4:
continue
start_time = '.'.join(str(i) for i in ret[0:3])
end_time = start_time.replace(ret[0], ret[3])
print(start_time + "-" + end_time)
break
源码下载
https://download.csdn.net/download/weixin_44774716/85761531