Bootstrap

LLM学习笔记-4

从Hugging Face加载预训练权重

  1. 因为每次训练都要有资源消耗 (GPU算力,还有时间成本),所以说及时保存模型是非常重要的。
  2. 教大家如何去下载Hugging Face的模型进行生成文本
    在这里插入图片描述
pip install transformers
pip install tiktoken
from importlib.metadata import version

pkgs = ["numpy", "torch", "transformers"]
for p in pkgs:
    print(f"{p} version: {version(p)}")

numpy version: 1.26.4
torch version: 2.1.2
transformers version: 4.39.3

from transformers import GPT2Model


# allowed model names
model_names = {
    "gpt2-small": "openai-community/gpt2",         # 124M
    "gpt2-medium": "openai-community/gpt2-medium", # 355M
    "gpt2-large": "openai-community/gpt2-large",   # 774M
    "gpt2-xl": "openai-community/gpt2-xl"          # 1558M
}

CHOOSE_MODEL = "gpt2-small"

gpt_hf = GPT2Model.from_pretrained(model_names[CHOOSE_MODEL], cache_dir="checkpoints")
gpt_hf.eval()

GPT2Model(
(wte): Embedding(50257, 768)
(wpe): Embedding(1024, 768)
(drop): Dropout(p=0.1, inplace=False)
(h): ModuleList(
(0-11): 12 x GPT2Block(
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(attn): GPT2Attention(
(c_attn): Conv1D()
(c_proj): Conv1D()
(attn_dropout): Dropout(p=0.1, inplace=False)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(mlp): GPT2MLP(
(c_fc): Conv1D()
(c_proj): Conv1D()
(act): NewGELUActivation()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)

BASE_CONFIG = {
    "vocab_size": 50257,  # Vocabulary size
    "ctx_len": 1024,      # Context length
    "drop_rate": 0.0,     # Dropout rate
    "qkv_bias": True      # Query-key-value bias
}

model_configs = {
    "gpt2-small": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
    "gpt2-medium": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
    "gpt2-large": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
    "gpt2-xl": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}


BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
def assign_check(left, right):
    if left.shape != right.shape:
        raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
    return torch.nn.Parameter(torch.tensor(right))
import numpy as np


def load_weights(gpt, gpt_hf):

    d = gpt_hf.state_dict()

    gpt.pos_emb.weight = assign_check(gpt.pos_emb.weight, d["wpe.weight"])
    gpt.tok_emb.weight = assign_check(gpt.tok_emb.weight, d["wte.weight"])
    
    for b in range(BASE_CONFIG["n_layers"]):
        q_w, k_w, v_w = np.split(d[f"h.{b}.attn.c_attn.weight"], 3, axis=-1)
        gpt.trf_blocks[b].att.W_query.weight = assign_check(gpt.trf_blocks[b].att.W_query.weight, q_w.T)
        gpt.trf_blocks[b].att.W_key.weight = assign_check(gpt.trf_blocks[b].att.W_key.weight, k_w.T)
        gpt.trf_blocks[b].att.W_value.weight = assign_check(gpt.trf_blocks[b].att.W_value.weight, v_w.T)
    
        q_b, k_b, v_b = np.split(d[f"h.{b}.attn.c_attn.bias"], 3, axis=-1)
        gpt.trf_blocks[b].att.W_query.bias = assign_check(gpt.trf_blocks[b].att.W_query.bias, q_b)
        gpt.trf_blocks[b].att.W_key.bias = assign_check(gpt.trf_blocks[b].att.W_key.bias, k_b)
        gpt.trf_blocks[b].att.W_value.bias = assign_check(gpt.trf_blocks[b].att.W_value.bias, v_b)
    
    
        gpt.trf_blocks[b].att.out_proj.weight = assign_check(gpt.trf_blocks[b].att.out_proj.weight, d[f"h.{b}.attn.c_proj.weight"].T)
        gpt.trf_blocks[b].att.out_proj.bias = assign_check(gpt.trf_blocks[b].att.out_proj.bias, d[f"h.{b}.attn.c_proj.bias"])
    
        gpt.trf_blocks[b].ff.layers[0].weight = assign_check(gpt.trf_blocks[b].ff.layers[0].weight, d[f"h.{b}.mlp.c_fc.weight"].T)
        gpt.trf_blocks[b].ff.layers[0].bias = assign_check(gpt.trf_blocks[b].ff.layers[0].bias, d[f"h.{b}.mlp.c_fc.bias"])
        gpt.trf_blocks[b].ff.layers[2].weight = assign_check(gpt.trf_blocks[b].ff.layers[2].weight, d[f"h.{b}.mlp.c_proj.weight"].T)
        gpt.trf_blocks[b].ff.layers[2].bias = assign_check(gpt.trf_blocks[b].ff.layers[2].bias, d[f"h.{b}.mlp.c_proj.bias"])
    
        gpt.trf_blocks[b].norm1.scale = assign_check(gpt.trf_blocks[b].norm1.scale, d[f"h.{b}.ln_1.weight"])
        gpt.trf_blocks[b].norm1.shift = assign_check(gpt.trf_blocks[b].norm1.shift, d[f"h.{b}.ln_1.bias"])
        gpt.trf_blocks[b].norm2.scale = assign_check(gpt.trf_blocks[b].norm2.scale, d[f"h.{b}.ln_2.weight"])
        gpt.trf_blocks[b].norm2.shift = assign_check(gpt.trf_blocks[b].norm2.shift, d[f"h.{b}.ln_2.bias"])
    
        gpt.final_norm.scale = assign_check(gpt.final_norm.scale, d[f"ln_f.weight"])
        gpt.final_norm.shift = assign_check(gpt.final_norm.shift, d[f"ln_f.bias"])
        gpt.out_head.weight = assign_check(gpt.out_head.weight, d["wte.weight"])


import tiktoken
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

#####################################
# Chapter 2
#####################################


class GPTDatasetV1(Dataset):
    def __init__(self, txt, tokenizer, max_length, stride):
        self.tokenizer = tokenizer
        self.input_ids = []
        self.target_ids = []

        # Tokenize the entire text
        token_ids = tokenizer.encode(txt)

        # Use a sliding window to chunk the book into overlapping sequences of max_length
        for i in range(0, len(token_ids) - max_length, stride):
            input_chunk = token_ids[i:i + max_length]
            target_chunk = token_ids[i + 1: i + max_length + 1]
            self.input_ids.append(torch.tensor(input_chunk))
            self.target_ids.append(torch.tensor(target_chunk))

    def __len__(self):
        return len(self.input_ids)

    def __getitem__(self, idx):
        return self.input_ids[idx], self.target_ids[idx]


def create_dataloader_v1(txt, batch_size=4, max_length=256,
                         stride=128, shuffle=True, drop_last=True):
    # Initialize the tokenizer
    tokenizer = tiktoken.get_encoding("gpt2")

    # Create dataset
    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)

    # Create dataloader
    dataloader = DataLoader(
        dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)

    return dataloader


#####################################
# Chapter 3
#####################################
class MultiHeadAttention(nn.Module):
    def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
        super().__init__()
        assert d_out % num_heads == 0, "d_out must be divisible by n_heads"

        self.d_out = d_out
        self.num_heads = num_heads
        self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim

        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
        self.dropout = nn.Dropout(dropout)
        self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1))

    def forward(self, x):
        b, num_tokens, d_in = x.shape

        keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
        queries = self.W_query(x)
        values = self.W_value(x)

        # We implicitly split the matrix by adding a `num_heads` dimension
        # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
        keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
        values = values.view(b, num_tokens, self.num_heads, self.head_dim)
        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)

        # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
        keys = keys.transpose(1, 2)
        queries = queries.transpose(1, 2)
        values = values.transpose(1, 2)

        # Compute scaled dot-product attention (aka self-attention) with a causal mask
        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head

        # Original mask truncated to the number of tokens and converted to boolean
        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]

        # Use the mask to fill attention scores
        attn_scores.masked_fill_(mask_bool, -torch.inf)

        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
        attn_weights = self.dropout(attn_weights)

        # Shape: (b, num_tokens, num_heads, head_dim)
        context_vec = (attn_weights @ values).transpose(1, 2)

        # Combine heads, where self.d_out = self.num_heads * self.head_dim
        context_vec = context_vec.reshape(b, num_tokens, self.d_out)
        context_vec = self.out_proj(context_vec)  # optional projection

        return context_vec


#####################################
# Chapter 4
#####################################
class LayerNorm(nn.Module):
    def __init__(self, emb_dim):
        super().__init__()
        self.eps = 1e-5
        self.scale = nn.Parameter(torch.ones(emb_dim))
        self.shift = nn.Parameter(torch.zeros(emb_dim))

    def forward(self, x):
        mean = x.mean(dim=-1, keepdim=True)
        var = x.var(dim=-1, keepdim=True, unbiased=False)
        norm_x = (x - mean) / torch.sqrt(var + self.eps)
        return self.scale * norm_x + self.shift


class GELU(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return 0.5 * x * (1 + torch.tanh(
            torch.sqrt(torch.tensor(2.0 / torch.pi)) *
            (x + 0.044715 * torch.pow(x, 3))
        ))


class FeedForward(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
            GELU(),
            nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
            nn.Dropout(cfg["drop_rate"])
        )

    def forward(self, x):
        return self.layers(x)


class TransformerBlock(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.att = MultiHeadAttention(
            d_in=cfg["emb_dim"],
            d_out=cfg["emb_dim"],
            block_size=cfg["ctx_len"],
            num_heads=cfg["n_heads"],
            dropout=cfg["drop_rate"],
            qkv_bias=cfg["qkv_bias"])
        self.ff = FeedForward(cfg)
        self.norm1 = LayerNorm(cfg["emb_dim"])
        self.norm2 = LayerNorm(cfg["emb_dim"])
        self.drop_resid = nn.Dropout(cfg["drop_rate"])

    def forward(self, x):
        # Shortcut connection for attention block
        shortcut = x
        x = self.norm1(x)
        x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_resid(x)
        x = x + shortcut  # Add the original input back

        # Shortcut connection for feed-forward block
        shortcut = x
        x = self.norm2(x)
        x = self.ff(x)
        x = self.drop_resid(x)
        x = x + shortcut  # Add the original input back

        return x


class GPTModel(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
        self.pos_emb = nn.Embedding(cfg["ctx_len"], cfg["emb_dim"])
        self.drop_emb = nn.Dropout(cfg["drop_rate"])

        self.trf_blocks = nn.Sequential(
            *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])

        self.final_norm = LayerNorm(cfg["emb_dim"])
        self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)

    def forward(self, in_idx):
        batch_size, seq_len = in_idx.shape
        tok_embeds = self.tok_emb(in_idx)
        pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
        x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_emb(x)
        x = self.trf_blocks(x)
        x = self.final_norm(x)
        logits = self.out_head(x)
        return logits


def generate_text_simple(model, idx, max_new_tokens, context_size):
    # idx is (B, T) array of indices in the current context
    for _ in range(max_new_tokens):

        # Crop current context if it exceeds the supported context size
        # E.g., if LLM supports only 5 tokens, and the context size is 10
        # then only the last 5 tokens are used as context
        idx_cond = idx[:, -context_size:]

        # Get the predictions
        with torch.no_grad():
            logits = model(idx_cond)

        # Focus only on the last time step
        # (batch, n_token, vocab_size) becomes (batch, vocab_size)
        logits = logits[:, -1, :]

        # Get the idx of the vocab entry with the highest logits value
        idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1)

        # Append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1)

    return idx


#####################################
# Chapter 5
#####################################


def text_to_token_ids(text, tokenizer):
    encoded = tokenizer.encode(text)
    encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
    return encoded_tensor


def token_ids_to_text(token_ids, tokenizer):
    flat = token_ids.squeeze(0)  # remove batch dimension
    return tokenizer.decode(flat.tolist())


def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None):

    # For-loop is the same as before: Get logits, and only focus on last time step
    for _ in range(max_new_tokens):
        idx_cond = idx[:, -context_size:]
        with torch.no_grad():
            logits = model(idx_cond)
        logits = logits[:, -1, :]

        # New: Filter logits with top_k sampling
        if top_k is not None:
            # Keep only top_k values
            top_logits, _ = torch.topk(logits, top_k)
            min_val = top_logits[:, -1]
            logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)

        # New: Apply temperature scaling
        if temperature > 0.0:
            logits = logits / temperature

            # Apply softmax to get probabilities
            probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)

            # Sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)

        # Otherwise same as before: get idx of the vocab entry with the highest logits value
        else:
            idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)

        # Same as before: append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)

    return idx


import torch

gpt = GPTModel(BASE_CONFIG)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
load_weights(gpt, gpt_hf)
gpt.to(device);
import tiktoken
# from previous_chapters import generate, text_to_token_ids, token_ids_to_text

torch.manual_seed(123)

tokenizer = tiktoken.get_encoding("gpt2")

# 此处为输入的文本
content ="Hello,My name is Lihua"

idx = text_to_token_ids(content, tokenizer).to(device)

token_ids = generate(
    model=gpt,
    idx=idx,
    max_new_tokens=30,
    context_size=BASE_CONFIG["ctx_len"],
    top_k=1,
    temperature=1.0
)

print("Input text:\n", content)
print("Output text:\n", token_ids_to_text(token_ids, tokenizer))

Input text:
Hello,My name is Lihua
Output text:
Hello,My name is Lihua. I am a student at the University of California, Berkeley. I am a member of the Student Government Association. I am a member of the Student

;