Bootstrap

第J2周:ResNet50V2算法实战与解析

1.ResNetV2结构与ResNet结构对比

在这里插入图片描述
🧲 改进点:(a)original 表示原始的 ResNet 的残差结构,(b)proposed 表示新的 ResNet 的残差结构。主要差别就是(a)结构先卷积后进行 BN 和激活函数计算,最后执行 addition 后再进行ReLU 计算; (b)结构先进行 BN 和激活函数计算后卷积,把 addition 后的 ReLU 计算放到了残差结构内部。

📌 改进结果:作者使用这两种不同的结构在 CIFAR-10 数据集上做测试,模型用的是 1001层的 ResNet 模型。从图中结果我们可以看出,(b)proposed 的测试集错误率明显更低一些,达到了 4.92%的错误率,(a)original 的测试集错误率是 7.61%。

1.2关于残差结构的不同尝试

在这里插入图片描述

(b-f)中的快捷连接被不同的组件阻碍。为了简化插图,我们不显示BN层,这里所有单位均采用权值层之后的BN层。图中(a-f)都是作者对残差结构的 shortcut 部分进行的不同尝试 ,作者对不同 shortcut 结构的尝试结果如下表所示 。

作者用不同 shortcut 结构的 ResNet-110 在 CIFAR-10 数据集上做测试,发现最原始的(a)original 结构是最好的,也就是 identity mapping 恒等映射是最好的。

1.3关于激活的尝试

在这里插入图片描述

最好的结果是(e)full pre-activation,其次到(a)original。

二、论文复现
思路:因为本章是识别四种鸟类,pytorch框架

2.1.1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU。尽量配置好GPU使用。

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
 
warnings.filterwarnings("ignore")             #忽略警告信息
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

2.1.2. 导入数据

data_dir = '/home/aiusers/space_yjl/深度学习训练营/进阶/第J1周:ResNet-50算法实战与解析/第8天/bird_photos'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('/')[9] for path in data_paths]
print(data_dir)
print(classNames)

在这里插入图片描述
图形变换,输出一下:用到torchvision.transforms.Compose()类,

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
total_data = datasets.ImageFolder("/home/aiusers/space_yjl/深度学习训练营/进阶/第J1周:ResNet-50算法实战与解析/第8天/bird_photos", transform=train_transforms)
print(total_data.class_to_idx)

在这里插入图片描述

2.1.3. 划分数据集

划分训练集和测试集.

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=0)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

在这里插入图片描述

2.2搭建Resnet-50V2模型

在这里插入图片描述

2.2.1代码

Residual Block+堆叠Residual Block+ResNet50V2架构复现

#%%
''' Residual Block '''
class Block2(nn.Module):
    def __init__(self, in_channel, filters, kernel_size=3, stride=1, conv_shortcut=False):
        super(Block2, self).__init__()
        self.preact = nn.Sequential(
            nn.BatchNorm2d(in_channel),
            nn.ReLU(True)
        )
 
        self.shortcut = conv_shortcut
        if self.shortcut:
            self.short = nn.Conv2d(in_channel, 4*filters, 1, stride=stride, padding=0, bias=False)
        elif stride>1:
            self.short = nn.MaxPool2d(kernel_size=1, stride=stride, padding=0)
        else:
            self.short = nn.Identity()
 
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, filters, 1, stride=1, bias=False),
            nn.BatchNorm2d(filters),
            nn.ReLU(True)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(filters, filters, kernel_size, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(filters),
            nn.ReLU(True)
        )
        self.conv3 = nn.Conv2d(filters, 4*filters, 1, stride=1, bias=False)
 
    def forward(self, x):
        x1 = self.preact(x)
        if self.shortcut:
            x2 = self.short(x1)
        else:
            x2 = self.short(x)
        x1 = self.conv1(x1)
        x1 = self.conv2(x1)
        x1 = self.conv3(x1)
        x = x1 + x2
        return x
 
class Stack2(nn.Module):
    def __init__(self, in_channel, filters, blocks, stride=2):
        super(Stack2, self).__init__()
        self.conv = nn.Sequential()
        self.conv.add_module(str(0), Block2(in_channel, filters, conv_shortcut=True))
        for i in range(1, blocks-1):
            self.conv.add_module(str(i), Block2(4*filters, filters))
        self.conv.add_module(str(blocks-1), Block2(4*filters, filters, stride=stride))
 
    def forward(self, x):
        x = self.conv(x)
        return x
''' 构建ResNet50V2 '''
class ResNet50V2(nn.Module):
    def __init__(self,
                 include_top=True,  # 是否包含位于网络顶部的全链接层
                 preact=True,  # 是否使用预激活
                 use_bias=True,  # 是否对卷积层使用偏置
                 input_shape=[224, 224, 3],
                 classes=1000,
                 pooling=None):  # 用于分类图像的可选类数
        super(ResNet50V2, self).__init__()
 
        self.conv1 = nn.Sequential()
        self.conv1.add_module('conv', nn.Conv2d(3, 64, 7, stride=2, padding=3, bias=use_bias, padding_mode='zeros'))
        if not preact:
            self.conv1.add_module('bn', nn.BatchNorm2d(64))
            self.conv1.add_module('relu', nn.ReLU())
        self.conv1.add_module('max_pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
 
        self.conv2 = Stack2(64, 64, 3)
        self.conv3 = Stack2(256, 128, 4)
        self.conv4 = Stack2(512, 256, 6)
        self.conv5 = Stack2(1024, 512, 3, stride=1)
 
        self.post = nn.Sequential()
        if preact:
            self.post.add_module('bn', nn.BatchNorm2d(2048))
            self.post.add_module('relu', nn.ReLU())
        if include_top:
            self.post.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
            self.post.add_module('flatten', nn.Flatten())
            self.post.add_module('fc', nn.Linear(2048, classes))
        else:
            if pooling=='avg':
                self.post.add_module('avg_pool', nn.AdaptiveAvgPool2d((1, 1)))
            elif pooling=='max':
                self.post.add_module('max_pool', nn.AdaptiveMaxPool2d((1, 1)))
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.post(x)
        return x
 
 
model = ResNet50V2().to(device)
model
''' 显示网络结构 '''

在这里插入图片描述

import torchsummary as summary
summary.summary(model, (3, 224, 224))

在这里插入图片描述

三、训练与运行

  1. 编写训练和测试函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
 
    return train_acc, train_loss
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
 
    test_acc  /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

2.训练器的选择和训练

import copy
 
optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
 
epochs = 10
 
train_loss = []
train_acc = []
test_loss = []
test_acc = []
 
best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标
 
for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)
 
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
 
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
 
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
 
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
 
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
 
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))
 
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)
 
print('Done')

在这里插入图片描述

3.结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

四、模型预测

from PIL import Image
 
classes = list(total_data.class_to_idx)
 
def predict_one_image(image_path, model, transform, classes):
 
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片
 
    test_img = transform(test_img)
 
    img = test_img.to(device).unsqueeze(0)
 
    model.eval()
    output = model(img)
 
    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
 
    # 预测训练集中的某张照片
 
predict_one_image(image_path='/home/aiusers/space_yjl/深度学习训练营/进阶/第J1周:ResNet-50算法实战与解析/第8天/bird_photos/Black Skimmer/002.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

在这里插入图片描述

5.个人总结

在深度学习和特别是卷积神经网络(CNN)中,跳跃连接(Skip Connection)是一种连接网络中不同层的结构,它允许网络中的信号绕过一些层直接传递。这种结构在残差网络(ResNet)中被广泛使用,以解决深度网络训练中的退化问题。

跳跃连接的作用
缓解梯度消失问题:在深度网络中,梯度可能会随着网络层的增加而逐渐减小,导致网络难以训练。跳跃连接通过直接连接输入和输出,有助于梯度的反向传播,从而缓解梯度消失问题。

提高训练速度:跳跃连接可以帮助网络更快地收敛,因为它减少了信息在网络中的传递路径。

提高模型性能:跳跃连接可以增加网络的容量,允许网络学习更复杂的特征,从而提高模型的性能。

;