Bootstrap

python宽度学习训练后模型的持久化存储和快速调用

在模型训练完成后,我们需要对我们训练出来的模型进行持久性储存,这样既能将我们调参后得到的最佳模型进行存储,还可以方便后期同团队的人进行调用预测。

1.原理

此处用到的是sklearn库中的joblib包进行存储和加载

因为宽度学习的类属于自定义类,所以在调用时需要在调用的py文件中加入bls代码中的类(在bls代码中分别是node_generator, scaler, broadNet)

如果不加入这些类,由于宽度学习是未知自定义的模型的结构,joblib包将无法解析模型,出现报错:AttributeError: Can‘t get attribute ‘XXX‘ on <module ‘__main__‘ from XXX>

2.核心代码

首先我们需要在训练模型后,对训练后的模型进行存储

核心代码

# bls模型训练
bls.fit(traindata, trainlabel)
# 存储训练后的模型
joblib.dump(bls,"model1.pkl")

然后再另一文件中加载模型文件——model1.pkl

核心代码

# 加载模型
BLS = joblib.load("model1.pkl")
# 用加载后的模型对测试集进行预测
predicts = BLS.predict(test_data)

3.完整代码

训练及存储模型宽度学习(bls)代码:

import numpy as np
from sklearn import preprocessing
import pandas as pd
from sklearn.model_selection import train_test_split
import datetime
import joblib

# 准确度显示
def show_accuracy(predictLabel, Label):
    Label = np.ravel(Label).tolist()
    predictLabel = predictLabel.tolist()
    count = 0
    for i in range(len(Label)):
        if Label[i] == predictLabel[i]:
            count += 1
    return (round(count / len(Label), 5))


# 线性/非线性变化
class node_generator(object):
    def __init__(self, isenhance=False):
        self.Wlist = []
        self.blist = []
        self.function_num = 0
        self.isenhance = isenhance

    def sigmoid(self, x):
        return 1.0 / (1 + np.exp(-x))

    def relu(self, x):
        return np.maximum(x, 0)

    def tanh(self, x):
        return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))

    def linear(self, x):
        return x

    def orth(self, W):
        """
        orth是正交基的意思,求正交基可能是为了使增强节点彼此无关
        目前看来,这个函数应该配合下一个generator函数是生成权重的
        此函数传入的weights与传出的weights的shape是一样的。
        """
        for i in range(0, W.shape[1]):
            w = np.mat(W[:, i].copy()).T
            w_sum = 0
            for j in range(i):
                wj = np.mat(W[:, j].copy()).T
                w_sum += (w.T.dot(wj))[0, 0] * wj
            w -= w_sum
            w = w / np.sqrt(w.T.dot(w))
            W[:, i] = np.ravel(w)

        return W

    def generator(self, shape, times):
        for i in range(times):
            W = 2 * np.random.random(size=shape) - 1
            if self.isenhance == True:
                W = self.orth(W)  # 只在增强层使用
            b = 2 * np.random.random() - 1
            yield (W, b)

    def generator_nodes(self, data, times, batchsize, function_num):
        # 按照bls的理论,mapping layer是输入乘以不同的权重加上不同的偏差之后得到的
        # 若干组,所以,权重是一个列表,每一个元素可作为权重与输入相乘
        self.Wlist = [elem[0] for elem in self.generator((data.shape[1], batchsize), times)]
        self.blist = [elem[1] for elem in self.generator((data.shape[1], batchsize), times)]

        self.function_num = {'linear': self.linear,
                             'sigmoid': self.sigmoid,
                             'tanh': self.tanh,
                             'relu': self.relu}[function_num]  # 激活函数供不同的层选择
        # 下面就是先得到一组mapping nodes,再不断叠加,得到len(Wlist)组mapping nodes
        nodes = self.function_num(data.dot(self.Wlist[0]) + self.blist[0])
        for i in range(1, len(self.Wlist)):
            nodes = np.column_stack((nodes, self.function_num(data.dot(self.Wlist[i]) + self.blist[i])))
        return nodes

    def transform(self, testdata):
        testnodes = self.function_num(testdata.dot(self.Wlist[0]) + self.blist[0])
        for i in range(1, len(self.Wlist)):
            testnodes = np.column_stack((testnodes, self.function_num(testdata.dot(self.Wlist[i]) + self.blist[i])))
        return testnodes


# 归一化处理
class scaler:
    def __init__(self):
        self._mean = 0
        self._std = 0

    def fit_transform(self, traindata):
        self._mean = traindata.mean(axis=0)
        self._std = traindata.std(axis=0)
        return (traindata - self._mean) / (self._std + 0.001)

    def transform(self, testdata):
        return (testdata - self._mean) / (self._std + 0.001)


# 宽度神经网络结构
class broadNet(object):
    def __init__(self, map_num=10, enhance_num=10, map_function='linear', enhance_function='linear', batchsize='auto'):
        self.map_num = map_num
        self.enhance_num = enhance_num
        self.batchsize = batchsize
        self.map_function = map_function
        self.enhance_function = enhance_function

        self.W = 0
        self.pseudoinverse = 0
        self.normalscaler = scaler()
        self.onehotencoder = preprocessing.OneHotEncoder(sparse=False)
        self.mapping_generator = node_generator()
        self.enhance_generator = node_generator(isenhance=True)

    def fit(self, data, label):
        if self.batchsize == 'auto':
            self.batchsize = data.shape[1]

        data = self.normalscaler.fit_transform(data)
        label = self.onehotencoder.fit_transform(np.mat(label).T)

        mappingdata = self.mapping_generator.generator_nodes(data, self.map_num, self.batchsize, self.map_function)
        enhancedata = self.enhance_generator.generator_nodes(mappingdata, self.enhance_num, self.batchsize,
                                                             self.enhance_function)

        print('number of mapping nodes {0}, number of enhence nodes {1}'.format(mappingdata.shape[1],
                                                                                enhancedata.shape[1]))
        print('mapping nodes maxvalue {0} minvalue {1} '.format(round(np.max(mappingdata), 5),
                                                                round(np.min(mappingdata), 5)))
        print('enhence nodes maxvalue {0} minvalue {1} '.format(round(np.max(enhancedata), 5),
                                                                round(np.min(enhancedata), 5)))

        inputdata = np.column_stack((mappingdata, enhancedata))
        print('input shape ', inputdata.shape)
        pseudoinverse = np.linalg.pinv(inputdata)
        # 新的输入到输出的权重
        print('pseudoinverse shape:', pseudoinverse.shape)
        self.W = pseudoinverse.dot(label)


    def decode(self, Y_onehot):
        Y = []
        for i in range(Y_onehot.shape[0]):
            lis = np.ravel(Y_onehot[i, :]).tolist()
            Y.append(lis.index(max(lis)))
        return np.array(Y)

    def accuracy(self, predictlabel, label):
        label = np.ravel(label).tolist()
        predictlabel = predictlabel.tolist()
        count = 0
        for i in range(len(label)):
            if label[i] == predictlabel[i]:
                count += 1
        return (round(count / len(label), 5))

    def predict(self, testdata):
        testdata = self.normalscaler.transform(testdata)
        test_mappingdata = self.mapping_generator.transform(testdata)
        test_enhancedata = self.enhance_generator.transform(test_mappingdata)

        test_inputdata = np.column_stack((test_mappingdata, test_enhancedata))
        return self.decode(test_inputdata.dot(self.W))


if __name__ == '__main__':
    # load the data
    train_data = pd.read_csv('../train.csv')
    test_data = pd.read_csv('../test.csv')
    samples_data = pd.read_csv('../sample_submission2.csv')

    le = preprocessing.LabelEncoder()
    #for item in train_data.columns:
    #    train_data[item] = le.fit_transform(train_data[item])

    label = train_data['label'].values
    data = train_data.drop('label', axis=1)
    data = data.values
    print(data.shape, max(label) + 1)

    traindata, testdata, trainlabel, testlabel = train_test_split(data, label, test_size=0.2, random_state=0)
    print(traindata.shape, trainlabel.shape, testdata.shape, testlabel.shape)

    bls = broadNet(map_num=32,
                   enhance_num=33,
                   map_function='sigmoid',
                   enhance_function='sigmoid',
                   batchsize=200)

    starttime = datetime.datetime.now()
    bls.fit(traindata, trainlabel)
    endtime = datetime.datetime.now()
    # 存储训练后模型
    joblib.dump(bls,"model1.pkl")
    print('the training time of BLS is {0} seconds'.format((endtime - starttime).total_seconds()))
    predictlabel = bls.predict(testdata)
    print(show_accuracy(predictlabel, testlabel))

调用自己训练的模型代码:

import numpy as np
from sklearn import preprocessing
import pandas as pd
import joblib

class node_generator(object):
    def __init__(self, isenhance=False):
        self.Wlist = []
        self.blist = []
        self.function_num = 0
        self.isenhance = isenhance

    def sigmoid(self, x):
        return 1.0 / (1 + np.exp(-x))

    def relu(self, x):
        return np.maximum(x, 0)

    def tanh(self, x):
        return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))

    def linear(self, x):
        return x

    def orth(self, W):
        """
        orth是正交基的意思,求正交基可能是为了使增强节点彼此无关
        目前看来,这个函数应该配合下一个generator函数是生成权重的
        此函数传入的weights与传出的weights的shape是一样的。
        """
        for i in range(0, W.shape[1]):
            w = np.mat(W[:, i].copy()).T
            w_sum = 0
            for j in range(i):
                wj = np.mat(W[:, j].copy()).T
                w_sum += (w.T.dot(wj))[0, 0] * wj
            w -= w_sum
            w = w / np.sqrt(w.T.dot(w))
            W[:, i] = np.ravel(w)

        return W

    def generator(self, shape, times):
        for i in range(times):
            W = 2 * np.random.random(size=shape) - 1
            if self.isenhance == True:
                W = self.orth(W)  # 只在增强层使用
            b = 2 * np.random.random() - 1
            yield (W, b)

    def generator_nodes(self, data, times, batchsize, function_num):
        # 按照bls的理论,mapping layer是输入乘以不同的权重加上不同的偏差之后得到的
        # 若干组,所以,权重是一个列表,每一个元素可作为权重与输入相乘
        self.Wlist = [elem[0] for elem in self.generator((data.shape[1], batchsize), times)]
        self.blist = [elem[1] for elem in self.generator((data.shape[1], batchsize), times)]

        self.function_num = {'linear': self.linear,
                             'sigmoid': self.sigmoid,
                             'tanh': self.tanh,
                             'relu': self.relu}[function_num]  # 激活函数供不同的层选择
        # 下面就是先得到一组mapping nodes,再不断叠加,得到len(Wlist)组mapping nodes
        nodes = self.function_num(data.dot(self.Wlist[0]) + self.blist[0])
        for i in range(1, len(self.Wlist)):
            nodes = np.column_stack((nodes, self.function_num(data.dot(self.Wlist[i]) + self.blist[i])))
        return nodes

    def transform(self, testdata):
        testnodes = self.function_num(testdata.dot(self.Wlist[0]) + self.blist[0])
        for i in range(1, len(self.Wlist)):
            testnodes = np.column_stack((testnodes, self.function_num(testdata.dot(self.Wlist[i]) + self.blist[i])))
        return testnodes


class scaler:
    def __init__(self):
        self._mean = 0
        self._std = 0

    def fit_transform(self, traindata):
        self._mean = traindata.mean(axis=0)
        self._std = traindata.std(axis=0)
        return (traindata - self._mean) / (self._std + 0.001)

    def transform(self, testdata):
        return (testdata - self._mean) / (self._std + 0.001)


class broadNet(object):
    def __init__(self, map_num=10, enhance_num=10, map_function='linear', enhance_function='linear', batchsize='auto'):
        self.map_num = map_num
        self.enhance_num = enhance_num
        self.batchsize = batchsize
        self.map_function = map_function
        self.enhance_function = enhance_function

        self.W = 0
        self.pseudoinverse = 0
        self.normalscaler = scaler()
        self.onehotencoder = preprocessing.OneHotEncoder(sparse=False)
        self.mapping_generator = node_generator()
        self.enhance_generator = node_generator(isenhance=True)

    def fit(self, data, label):
        if self.batchsize == 'auto':
            self.batchsize = data.shape[1]

        data = self.normalscaler.fit_transform(data)
        label = self.onehotencoder.fit_transform(np.mat(label).T)

        mappingdata = self.mapping_generator.generator_nodes(data, self.map_num, self.batchsize, self.map_function)
        enhancedata = self.enhance_generator.generator_nodes(mappingdata, self.enhance_num, self.batchsize,
                                                             self.enhance_function)

        print('number of mapping nodes {0}, number of enhence nodes {1}'.format(mappingdata.shape[1],
                                                                                enhancedata.shape[1]))
        print('mapping nodes maxvalue {0} minvalue {1} '.format(round(np.max(mappingdata), 5),
                                                                round(np.min(mappingdata), 5)))
        print('enhence nodes maxvalue {0} minvalue {1} '.format(round(np.max(enhancedata), 5),
                                                                round(np.min(enhancedata), 5)))

        inputdata = np.column_stack((mappingdata, enhancedata))
        print('input shape ', inputdata.shape)
        pseudoinverse = np.linalg.pinv(inputdata)
        # 新的输入到输出的权重
        print('pseudoinverse shape:', pseudoinverse.shape)
        self.W = pseudoinverse.dot(label)


    def decode(self, Y_onehot):
        Y = []
        for i in range(Y_onehot.shape[0]):
            lis = np.ravel(Y_onehot[i, :]).tolist()
            Y.append(lis.index(max(lis)))
        return np.array(Y)

    def accuracy(self, predictlabel, label):
        label = np.ravel(label).tolist()
        predictlabel = predictlabel.tolist()
        count = 0
        for i in range(len(label)):
            if label[i] == predictlabel[i]:
                count += 1
        return (round(count / len(label), 5))

    def predict(self, testdata):
        testdata = self.normalscaler.transform(testdata)
        test_mappingdata = self.mapping_generator.transform(testdata)
        test_enhancedata = self.enhance_generator.transform(test_mappingdata)

        test_inputdata = np.column_stack((test_mappingdata, test_enhancedata))
        return self.decode(test_inputdata.dot(self.W))

if __name__ == '__main__':

    test_data = pd.read_csv('../test.csv')
    samples_data = pd.read_csv('../sample_submission2.csv')
    # 加载训练好的模型
    BLS = joblib.load("model1.pkl")

    predicts = BLS.predict(test_data)

    # save as csv file
    samples = samples_data['ImageId']
    result = {'ImageId':samples,
                'Label': predicts }
    result = pd.DataFrame(result)

    result.to_csv('../output/model8.csv', index=False)

调用后的模型对测试集进行预测的结果:

;