Bootstrap

苹果瑕疵数据集苹果质量数据集YOLO格式VOC格式 深度学习 目标检测 数据集

 一、数据集概述

数据集名称:2类苹果图像数据集

   数据集包含两类样本:正常苹果和有瑕疵的苹果。正常苹果样本代表完好的苹果,而有瑕疵的苹果样本代表苹果表面可能存在的损伤、瑕疵或病害。每个样本都经过详细标记和描述,以便训练模型或算法来识别和分类这些不同状态的苹果。

1.1可能应用的领域

  • 农业生产: 农民和果园管理者可以利用这个数据集开发苹果瑕疵检测系统,帮助他们及时发现和处理有瑕疵的苹果,提高果品质量和产量。

  • 食品加工: 食品加工企业可以利用这一数据集中的技术,对苹果进行自动检测和筛选,确保生产过程中使用的苹果符合质量标准。

  • 质量控制: 这个数据集可以用于苹果质量控制领域,帮助企业监测生产线上的苹果瑕疵情况,确保产品质量符合标准。

 1.2数据采集

  • 确定苹果分类数据集的范围和目标,包含多样的目标类别、尺寸和姿态变化,丰富的背景变化,标注精准度,数据平衡性,多样性的数据增强,数据质量控制。
  • 准备采集设备,包括相机、照明设备和标注工具。确保图像清晰度高,苹果特征准确可见。

1.3数据集包含的分类

    包含697张苹果图片,数据集中包含以下几种类别

  • 正常苹果:用于模型学习识别和分类健康的苹果。
  • 有瑕疵的苹果:用于模型学习识别苹果表面的损坏、瑕疵或其他质量问题。

二、数据标注

  2.1手动标注数据集  

  构建苹果瑕疵识别分类数据集是一项繁重而复杂的任务,涉及苹果和受损苹果两种分类的标注。受损苹果可能包括各种瑕疵,如划痕、碰伤等,这些细微差别增加了标注工作的复杂度和工作量。标注人员需要投入大量时间和精力,精确标注每个苹果的状态和类别,以捕捉瑕疵的特征和准确位置。通过使用 LabelImg 逐一标注图像,确保每个苹果和瑕疵都被准确标注,以保证数据集的准确性和完整性,为苹果瑕疵识别算法的训练和改进奠定基础。

2.2 数据集结构

  在使用深度学习进行训练任务时,通常需要将数据集划分为训练集、验证集和测试集。这种划分是为了评估模型的性能并确保模型的泛化能力。数据集划分为训练集、验证集和测试集的比例。常见的比例为 70% 训练集、20% 验证集和 10% 测试集,也就是7:2:1。数据集已经按照标准比例进行划分。

标注格式:

  • VOC格式 (XML)
  • YOLO格式 (TXT)
yolo_dataset/
│
├── train/
│   ├── images/
│   │   ├── image1.jpg
│   │   ├── image2.jpg
│   │   ├── ...
│   │
│   └── labels/
│       ├── image1.txt
│       ├── image2.txt
│       ├── ...
│
└── test...
└── valid...

voc_dataset/
│
├── train/
│   ├───├
│   │   ├── image1.xml
│   │   ├── image2.xml
│   │   ├── ...
│   │
│   └───├
│       ├── image1.jpg
│       ├── image2.jpg
│       ├── ...
│
└── test...
└── valid...

三、使用指南

步骤介绍

  • 数据预处理

    • 加载瑕疵苹果数据集,包括图像和相应的标注信息(瑕疵苹果的类别和边界框信息)。对图像数据进行预处理,如调整大小、归一化、数据增强等操作。
import os
import cv2

def load_dataset(data_dir):
    images = []
    annotations = []

    for file in os.listdir(data_dir):
        if file.endswith('.jpg'):
            image_path = os.path.join(data_dir, file)
            annotation_path = os.path.join(data_dir, file.replace('.jpg', '.txt'))

            if os.path.exists(annotation_path):
                # 读取图像
                image = cv2.imread(image_path)
                images.append(image)

                # 读取标注文件
                with open(annotation_path, 'r') as f:
                    lines = f.readlines()
                    annotation = []
                    for line in lines:
                        # 假设标注文件格式为:类别 x_min y_min x_max y_max
                        parts = line.strip().split(' ')
                        category = parts[0]
                        bbox = [int(parts[i]) for i in range(1, 5)]
                        annotation.append((category, bbox))
                    annotations.append(annotation)

    return images, annotations

# 加载训练集数据
train_images, train_annotations = load_dataset('path_to_train_dataset_directory')

# 加载测试集数据
test_images, test_annotations = load_dataset('path_to_test_dataset_directory')
  • 模型训练

    • 使用数据集对模型进行训练,通过反向传播算法更新模型参数。
    • 监控训练过程的指标,如损失值、准确率等,以便调整训练策略。
  • 模型评估

    • 使用验证集或测试集对训练好的模型进行评估,计算准确率、召回率、mAP 等指标。
  • 模型部署

    • 部署训练好的模型到生产环境中,可以使用工具如 OpenCV 或 TensorFlow Serving 进行部署。
# 模型部署代码示例
# 加载模型
model = tf.keras.models.load_model('path_to_your_trained_model')

# 预处理图像
def preprocess_image(image):
    image = cv2.resize(image, (416, 416))  # 调整大小
    image = image / 255.0  # 归一化
    image = np.expand_dims(image, axis=0)  # 添加批次维度
    return image

# 目标检测 API
@app.route('/detect_defective_apples', methods=['POST'])
def detect_defective_apples():
    if 'image' not in request.files:
        return jsonify({'error': 'No image uploaded'})

    file = request.files['image']
    image = cv2.imdecode(np.fromstring(file.read(), np.uint8), cv2.IMREAD_COLOR)
    
    processed_image = preprocess_image(image)
    
    # 模型推理
    predictions = model.predict(processed_image)
    
    # 处理模型输出
    # 这里假设模型输出为类别和边界框信息
    detected_classes = predictions['classes']
    detected_boxes = predictions['boxes']

    return jsonify({'detected_classes': detected_classes, 'detected_boxes': detected_boxes})

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)  # 在 localhost 的 5000 端口运行 Flask 应用
  • 结果可视化

    • 可视化模型在测试集上的检测结果,可以将检测结果叠加在原始图像上显示。
;