Bootstrap

【LangChain学习之旅】—(7) 调用模型:使用OpenAI API还是微调开源Llama2/ChatGLM?

之前的内容讲了提示工程的原理以及 LangChain 中的具体使用方式。今天,我们来着重讨论 Model I/O 中的第二个子模块,LLM。

让我们带着下面的问题来开始这一节课的学习。大语言模型,不止 ChatGPT 一种。调用 OpenAI 的 API,当然方便且高效,不过,如果我就是想用其他的模型(比如说开源的 Llama2 或者 ChatGLM),该怎么做?再进一步,如果我就是想在本机上从头训练出来一个新模型,然后在 LangChain 中使用自己的模型,又该怎么做?

关于大模型的微调(或称精调)、预训练、重新训练、乃至从头训练,这是一个相当大的话题,不仅仅需要足够的知识和经验,还需要大量的语料数据、GPU 硬件和强大的工程能力。别说一节课了,我想两三个专栏也不一定能讲全讲透。不过,我可以提纲挈领地把大模型的训练流程和使用方法给你缕一缕。这样你就能体验到,在 LangChain 中使用自己微调的模型是完全没问题的。

大语言模型发展史

说到语言模型,我们不妨先从其发展史中去了解一些关键信息。

Google 2018 年的论文名篇 Attention is all you need,提出了 Transformer 架构,也给这一次 AI 的腾飞点了火。Transformer 是几乎所有预训练模型的核心底层架构。基于 Transformer 预训练所得的大规模语言模型也被叫做“基础模型”(Foundation Model 或 Base Model)。

在这个过程中,模型学习了词汇、语法、句子结构以及上下文信息等丰富的语言知识。这种在大量数据上学到的知识,为后续的下游任务(如情感分

;